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Abstract
We study actions of inverse semigroups on arbitrary spaces, and relate
properties of the action to topological properties of the associated groupoid
of germs. Then, following the construction of Paterson in his 1999 book
“Inverse Semigroups, Groupoids and their Operator Algebras”, we inves-
tigate the intrinsic actions of inverse semigroups on their character spaces,
and their groupoids of germs. We draw inspiration from a well-known
result that characterizes sub-semigroups of the inverse semigroup of open
bisections on an étale groupoid, which we call bisection wideness. Using
Paterson’s approach, we construct a number of ample groupoids associ-
ated to an inverse semigroup, these being the universal groupoid and the
groupoid of ultragerms, and determine conditions under which an inverse
semigroup S and a sub-semigroup W give rise to the same groupoid.
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Notation

F(E(S)) The set of filters on E(S).

FP (E(S)) The set of principal filters on E(S).

Int(X) The topological interior of the set X .

Iso(G) The isotropy subgroupoid of a groupoid G.

L(E(S)) The set of filters on E(S).

G0(S) The contracted universal groupoid of S.

Gu(S) The universal groupoid of S.

G∞(S) The groupoid of ultragerms of S.

Spec(S) The collection of non-zero Boolean homomorphisms from E(S)
to {0, 1}.

U(E(S)) The set of ultrafilters on E(S).

Ê(S) The collection of non-zero semigroup homomorphisms from E(S)
to {0, 1}.

Ê0(S) The collection of non-zero monoid homomorphisms from E(S) to
{0, 1}.

I(X) The inverse semigroup of partial bijections on subsets of X .
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viii NOTATION

In The inverse semigroup of partial bijections on the finite n-element
set.

E(S) The idempotent sub-semigroup of the inverse semigroup S.



Chapter 1

Introduction

1.1 Background

The connection between inverse semigroups and groupoids is an active
area of research, particularly in the area of operator algebras. However,
they originally evolved quite independently, and with different motiva-
tions.

Inverse semigroups were initially studied in the mid-20th century by Ehres-
mann [Ehr57], Wagner [Wag52] and Preston [Pre54]. They were devel-
oped as an algebraic analogue of pseudogroups, which are collections of
partial homeomorphisms on open sets of a topological space.

Similarly, groupoids were first investigated by the German mathemati-
cian Heinrich Brandt in the early 20th-century. They were first introduced
under the name “gruppoid”, from the German term “gruppe” for group
[Bra27]. As the name suggests, groupoids are a generalization of groups
insofar as the multiplication may only be partially defined. Groups are
generally considered models of global symmetry, and so groupoids were
motivated by the desire to model partial symmetry. Alan Weinstein’s ar-
ticle “Groupoids: Unifying Internal and External Symmetry” is a classical
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2 CHAPTER 1. INTRODUCTION

exposition on groupoids from the symmetry perspective.

The relevance of inverse semigroups and groupoids to one another is es-
pecially apparent when studying operator algebras, and in particular, C∗-
algebras. Historically, these have been studied for their applications to
quantum mechanics and the representation theory of locally compact groups,
among other things. They were first introduced by name by Gelfand &
Naimark [GN43] and Segal [Seg47] in the 1940s.

In 1980, Renault pioneered the groupoid approach to C∗-algebras, and
since then, the study of groupoid C∗-algebras has been immensely fruitful
[Ren80]. Of particular interest are étale groupoids, which are topological
groupoids that are locally homeomorphic to their unit space. Some au-
thors characterize étale groupoids as those topological groupoids whose
collection of open sets forms a monoid under subset multiplication [Res07,
Law23]. Lawson puts it succinctly; “... étale groupoids are those topologi-
cal groupoids that have an algebraic alter ego.”

Almost two decades later, in his book “Groupoids, Inverse Semigroups,
and their Operator Algebras”, Paterson studied the relationship between
these three structures [Pat99]. In particular, he introduced the construc-
tion of a C∗-algebra from an inverse semigroup, as well as describing the
“universal groupoid” of an inverse semigroup, obtained by finding the
groupoid of germs of a canonical action of the inverse semigroup on its
space of semicharacters. In doing so, he shows that the C∗-algebra of an
inverse semigroup is homeomorphic to the groupoid C∗-algebra of its uni-
versal groupoid.

Particularly important in the study of étale groupoids are open bisections.
These are open subsets of a groupoid that are homeomorphic to their range
(equivalently, their source) as an open subset of the unit space. It is desir-
able to work with open bisections of a groupoid whenever possible, as
they are nicely behaved - in particular, because the range and source maps
are injective when restricted to an open bisection. A common consequence
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of a groupoid being étale is that its collections of open bisections form a
basis for its topology. In the groupoids we introduce, many of our open
bisections are also compact. If the collection of compact open bisections
for a basis for a groupoid, we say that the groupoid is ample.

Appearing in work by Exel [Exe08], as well as Buss and Martinez [BM23],
is a result that describes a canonical action of the collection of open bi-
sections of an étale groupoid on its unit space, such that the groupoid of
germs of this action is homeomorphic to the original groupoid. They pro-
ceed to characterize precisely when a sub-semigroup of open bisections
can accomplish this via the restricted action - we refer to this characteriza-
tion as being bisection-wide.

Theorem ([Exe08]). Let G be an étale groupoid, and let S ⊆ Bis(G) be a
sub-semigroup. Then S is bisection-wide if and only if G(0) ⋊ S ∼= G.

In this thesis, we aim to generalize this result to the setting of Paterson.
If S is an inverse semigroup, and W ⊆ S a sub-semigroup, we character-
ize the circumstances under which S and W generate the same universal
groupoid, by establishing a condition we call wide (see Definition 4.2.26).

Under the assumption that our inverse semigroups carry a Boolean struc-
ture, we carry out a similar process for an interesting subgroupoid of the
universal groupoid, which we call the groupoid of ultragerms. We do so
by utilizing a generalized formulation of Stone duality described by Law-
son [Law23].

1.2 Outline

In Chapter 2, we provide a brief but rigorous introduction to groupoids,
topological groupoids and étale groupoids. We then gain motivation by
studying some examples, such as transformation groupoids and Deaconu-
Renault groupoids.
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In Chapter 3, we introduce inverse semigroups, and place particular focus
on their natural partial order. We also briefly introduce Boolean algebras
and Boolean inverse semigroups, which we use to study the groupoid of
ultragerms of an inverse semigroup. The latter half of the chapter is dedi-
cated to inverse semigroup actions and the groupoid of germs. Consid-
erable effort is put into describing the sheaf topology on the groupoid
of germs of an inverse semigroup action, and showing that it is an étale
groupoid. We then provide both necessary and sufficient conditions on
the inverse semigroup action such that the groupoid of germs possesses
useful topological properties, such as those of being Hausdorff, effective,
topologically free, topologically principal, and minimal.

Lastly, we describe the natural construction of an inverse semigroup from
an arbitrary étale groupoid - that is, we consider its inverse semigroup of
open bisections. We describe the canonical action of this collection of bi-
sections on the unit space of the groupoid and its groupoid of germs. Fol-
lowing [Exe08], we show that any bisection-wide sub-semigroup of open
bisections is sufficient to recover the original groupoid via the canonical
action and its groupoid of germs.

In Chapter 4, we construct the universal gro upoid, as well as the groupoid
of ultragerms and the contracted universal groupoid. This is done by de-
scribing both the semicharacter and filter approaches, and showing they
are equivalent. We briefly touch on Paterson’s S-groupoid formulation of
the universal groupoid, and explain its universality. Our wideness condi-
tion is then introduced, and we show that if W is a wide sub-semigroup of
S, then their universal groupoids are homeomorphic (see Theorem 4.2.29).
The converse implication is shown to hold upon assuming that the idem-
potents of W and S are isomorphic (see Proposition 4.2.30).

We then describe the groupoid of ultragerms as a subgroupoid of the uni-
versal groupoid, in the case that our inverse semigroups are Boolean. This
allows us to apply techniques of Stone duality to show that W and S pro-
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duce the same groupoid of ultragerms if and only if they are isomorphic
as inverse semigroups (see Theorem 4.3.10).

In Chapter 5, we finish by applying some of our techniques and results to
various settings, such as Paterson’s results on the C∗-algebras of inverse
semigroups and their universal groupoids, as well as groups with a zero
adjoined. We then discuss possible future lines of enquiry such as the
existence and uniqueness of a minimal wide sub-semigroup, and the char-
acterization of a wide subsemigroup of a graph inverse semigroup (as in
[Pat02]).
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Chapter 2

Groupoids

A groupoid is an algebraic structure that is often viewed as a general-
ization of a group. While groups are oftentimes used to model symme-
tries, groupoids are instead utilized to model partial symmetries - simi-
larly, groups naturally model automorphisms of objects, while groupoids
are more suited to modelling collections of morphisms between distinct
objects. The study of groupoids was initiated in 1927 by Brandt [Bra27]
under the name “gruppoid”. Since then, they have found relevance in
many areas of modern mathematics, including category theory, homotopy
theory, functional analysis, algebra and topology. A 1996 article by Wein-
stein [Wei96] provides an excellent coverage of the historical background
and relevance of groupoids as models of symmetry.

There exists a particular sub-class of topological groupoids, known as étale
groupoids. This terminology is thought to have originated from the French
verb “étaler”, which means to spread out. As described by Sims, “...[étale
groupoids] are the analogue, in the groupoid world, of discrete groups.”
[Sim18, Section 2.4] Étale groupoids have garnered particular interest among
mathematicians interested inC∗-algebras. Locally compact groupoids have
been found to model many important classes of C∗-algebras, and in par-

7
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ticular, étale groupoids are notable for reducing much of the technical pre-
lude to these constructions while still maintaining their efficacy, giving rise
to those such as Cuntz-Krieger algebras, graph algebras, and many more
[Ren80, KPRR97].

2.1 Preliminaries

Briefly, a groupoid is a group such that the binary operation is only par-
tially defined (see Definition 2.1.1 below). To some, the category-theoretic
definition is more natural - a groupoid is a small category such that every
arrow is an isomorphism. The reader is referred to [Sim18, Chapter 2] for
an excellent introductory coverage of étale groupoids, and the associated
technical details.

In the following, we establish some basic algebraic properties of groupoids.
Beyond this section, we employ these without comment.

Definition 2.1.1. A groupoid is a set G along with a set of composable pairs
G(2) ⊆ G × G, a multiplication operation (α, β) 7→ αβ, and an inverse oper-
ation γ 7→ γ−1, such that the following hold.

(G1) For all γ ∈ G, (γ−1)−1 = γ.

(G2) If (α, β) and (β, γ) are in G(2), then (αβ, γ) and (α, βγ) are in G(2), and
furthermore, (αβ)γ = α(βγ).

(G3) For each γ ∈ G one has (γ, γ−1) ∈ G(2), and if (α, β) ∈ G(2), then

α−1(αβ) = β and (αβ)β−1 = α.

In general, a groupoid doesn’t admit a unique identity, but has a distin-
guished subset of elements that behave like “local” identities, and are de-
fined analogously as those elements equal to the product γγ−1 (equiva-
lently, γ−1γ) for some γ ∈ G. This set is called the unit space of G, and
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is denoted by G(0). We define the source and range maps d, r : G → G(0),
respectively, by

d(γ) = γ−1γ and r(γ) = γγ−1.

If x ∈ G(0), and d(γ) = x (respectively, r(γ) = x) then one has xγ = γ

(respectively, γx = γ). The following lemma establishes the uniqueness of
inverses.

Lemma 2.1.2. If γ ∈ G and α, β are both inverses of γ, then α = β.

Proof. Since α and β are inverses of γ, we have

α(γβ) = β and (αγ)β = α,

by property (G3). The associativity of multiplication given by (G2) then
implies α = β.

Henceforth, for γ ∈ G, we may speak of the inverse of γ, and write γ−1

without ambiguity.

We state the following lemma (see [Sim18, Lemma 2.1.4]).

Lemma 2.1.3. If α, β ∈ G, then (α, β) ∈ G(2) if and only if r(β) = d(α).

x y z
α β

βα

Figure 2.1: Composition of morphisms in G.

Lemma 2.1.4. If (α, β) ∈ G(2), then r(αβ) = r(α) and d(αβ) = d(β).

Proof. Since (α, β) ∈ G(2) and (α, α−1), (α−1, α) ∈ G(2), two uses of (G2)
gives (αα−1, αβ) = (r(α), αβ) ∈ G(2). Applying both (G2) and (G3), we
have

r(α)(αβ) = (r(α)α)β = αβ = r(αβ)αβ.
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We can then multiply each side on the right by (αβ)−1, and again by (G3)
we have r(αβ) = r(α). A similar argument shows that d(αβ) = d(β).

Lemma 2.1.5. Let (α, β) ∈ G(2). Then (αβ)−1 = β−1α−1.

Proof. Suppose that (α, β) ∈ G(2). We have that

r(α−1) = d(α) = r(β) = d(β−1),

and so (β−1, α−1) ∈ G(2) by Lemma 2.1.3. Furthermore, an application of
Lemma 2.1.4 gives us

r(β−1α−1) = d(β) = d(αβ),

as (α, β) ∈ G(2). Hence, (β−1α−1, αβ) ∈ G(2). Similarly, one has

d(αββ−1) = d(β−1) = r(α−1),

and so (αββ−1, α−1) ∈ G(2), and (αββ−1)α−1 = (αβ)β−1α−1. Then, using
(G3) and Lemma 2.1.4, we have

(αβ)(αβ)−1 = r(αβ) = r(α) = αα−1 = (αβ)β−1α.

Uniqueness of inverses (Lemma 2.1.2) then implies that (αβ)−1 = β−1α−1

is the unique element satisfying the above equation.

x y z
δ

γ−1δ−1

δγ

δ−1

γ

γ−1

Figure 2.2: Composition of morphisms and their inverses.

Lemma 2.1.6. If x ∈ G(0) is a unit, then r(x) = d(x) = x.
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Proof. Suppose x ∈ G(0) is a unit. Then x = γ−1γ for some γ ∈ G. Applying
Lemma 2.1.5 along with (G3), we have

d(γ−1γ) = (γ−1γ)−1(γ−1γ) = γ−1γγ−1γ = γ−1γ.

Similarly,

r(γ−1γ) = (γ−1γ)(γ−1γ)−1 = γ−1γγ−1γ = γ−1γ.

For all x ∈ G(0), we define

Gx := {γ ∈ G : r(γ) = x} and Gx := {γ ∈ G : d(γ) = x},

as well as Gx
x = Gx ∩ Gx.1 For any unit x ∈ G(0), the groupoid axioms

imply that the set Gx
x is a group with respect to the multiplication on G, and

with x as identity. The set of all elements γ ∈ G such that r(γ) = d(γ) is
called the isotropy subgroupoid of G, and is denoted Iso(G). One can check
that Iso(G) =

⋃
x∈G(0) Gx

x , from which it is evident that Iso(G) is a union of
groups - often called a group bundle. We will make extensive use of this
set. In particular, notice that G(0) ⊆ Iso(G). Many important topological
properties of groupoids we study are related to how much isotropy lies
outside the unit space. Henceforth, we say that x ∈ G(0) has non-trivial
isotropy if Gx

x ̸= {x}.

2.1.1 Examples

Example 2.1.7. Let X be a topological space, and G the collection of equiv-
alence classes of continuous paths inX , whereby two paths are equivalent
if they are homotopic to one another - that is, if they can be continuously
deformed into one another. Note that if two paths are homotopic, their

1Note that in some literature, Gx and Gx are written as Gx and xG, respectively.
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endpoints must coincide. Then each γ ∈ G is an equivalence class of con-
tinuous paths from d(γ) to r(γ) in X , where d(γ) is the starting point of the
path, and r(γ) is the end of the path.

Multiplication in the groupoid is given by composition of paths, whereby
two paths are composable if and only if the endpoint of the first path coin-
cides with the starting point of the second path. This is well-defined with
regards to the equivalence classes, since two paths must share endpoints in
order to be homotopic to one another. The inverse of a path is given by the
same path travelling in the opposite direction. The unit space consists of
continuous paths composed with their inverse, from which it follows that
G(0) coincides with the collection of all starting points and ending points
of paths, which is just X . Hence, G is the fundamental groupoid of X . One
can check that, for any given x ∈ X , the fundamental group of X based at
x is the group Gx

x , as isotropy in the groupoid corresponds to equivalence
classes of continuous loops in X .

Example 2.1.8. Suppose R is an equivalence relation on a set X - that is,
a subset R ⊆ X × X satisfying the following axioms of an equivalence
relation.

(i) For all a ∈ X , we have (a, a) ∈ R. (Reflexivity)

(ii) If (a, b) ∈ R then (b, a) ∈ R. (Symmetry)

(iii) If (a, b), (b, c) ∈ R then (a, c) ∈ R. (Transitivity)

We define a groupoid G := R. The composable pairs are given by G(2) :=

{(a, b), (b, c) : (a, b), (b, c) ∈ R}. Transitivity means we can naturally define
multiplication as (a, b)(b, c) := (a, c), and symmetry gives rise to inversion
being defined as (a, b)−1 := (b, a). It follows from reflexivity that we can
take the unit space to be the set {(a, a) : a ∈ X}.

We identify G(0) with X via the correspondence x 7→ (x, x). For (x, y) ∈ R,
one has d(x, y) = y and r(x, y) = x. We can see that Iso(G) = {(x, x) : x ∈
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X}, and so G has no non-trivial isotropy - that is, Iso(G) = G(0). Further-
more, G is always a principal groupoid - that is, there exist no non-trivial
isotropy groups.

Notice that each axiom of the equivalence relation corresponds naturally
to the general definitions of the groupoid operations. It is an interesting
fact that equivalence relations and principal groupoids are algebraically
the same mathematical objects [Sim18, Lemma 2.1.14].

Both these preceding examples illustrate how the groupoid structure nat-
urally underlies numerous other mathematical objects. Further examples
include group actions (see Example 2.2.5) and the Deaconu-Renault groupoids
(see Example 2.2.6), both of which we introduce in the next section.

2.2 Étale Groupoids

Before we introduce the notion of an étale groupoid, we must first discuss
topological groupoids. Constructing a topological groupoid amounts to
endowing a groupoid with a topology that is compatible with its groupoid
structure.

Let X, Y be topological spaces. Throughout, by homeomorphism we mean
a continuous bijection f : X → Y with a continuous inverse, and by local
homeomorphism we mean a mapping f such that for every point x ∈ X ,
there exists some open neighbourhood U containing x such that f |U is a
homeomorphism, and f(U) is open in Y . We denote by Int(U) the topo-
logical interior of the set U , and by ∂U the boundary of U .

Whenever G is endowed with a topology, we will tacitly assume that G(2)

is equipped with the product topology inherited from the product space
G × G, and G(0) has the subspace topology with respect to G.
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2.2.1 Topological Groupoids

Let G be a groupoid, and τ a topology on G. We say (G, τ) is a topological
groupoid if the multiplication and involution maps are all continuous with
respect to τ .

Henceforth, we unambiguously write G to mean (G, τ) and omit mention
of the specific topology. One can check that since the range and source
maps are defined purely in terms of multiplication and inversion, if G is a
topological groupoid then the range and source are both continuous.

Since this thesis puts no Hausdorff assumption on our groupoids, the fol-
lowing proposition from [Sim18, Lemma 2.3.2] will come in use. We will
use the fact that a topological space X is Hausdorff if and only if every net
in X converges to at most one point [Wil04, Theorem 13.7.b)].

Proposition 2.2.1. Let G be a topological groupoid. Then G(0) is closed in
G if and only if G is Hausdorff.

Proof. Suppose G is Hausdorff, and let (γi) be a net in G(0) such that γi → γ

for some γ ∈ G. Since the range and source mappings are continuous,
r(γi) → r(γ) ∈ G(0). But each γi is a unit, so r(γi) = γi → r(γ). Since G is
Hausdorff, this limit is unique i.e. γ = r(γ) ∈ G(0). Hence, G(0) is closed
under limits and so is closed (see [Wil04, Theorem 11.7]).

Conversely, suppose G(0) is closed. Let (γi) be a net in G with γi → γ1 and
γi → γ2, for some γ1, γ2 ∈ G. Then by continuity of multiplication and
inversion, we have γ−1

i γi → γ−1
1 γ2. But each γ−1

i γi is a unit (Lemma 2.1.2),
and so γ−1

1 γ2 ∈ G(0), since G(0) is closed. This implies that γ1 = γ2, and so G
is Hausdorff.

An open set U ⊆ G is called an open bisection if r|U and s|U are homeomor-
phisms onto their image - in particular, they are injective - and r(U), d(U)

are open in G(0). Some authors refer to open bisections as slices, while oth-
ers (in particular, Renault) use the term G-set [Ren80, Definition 1.10].
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There is a lack of consistency in the literature regarding the precise defi-
nition of an étale groupoid - in particular, whether it should require that
G(0) be locally compact Hausdorff. Often, this depends on the context. This
thesis is only concerned with étale groupoids whose unit spaces are locally
compact Hausdorff, and so we follow the formulation of Exel [Exe08].

Definition 2.2.2. A topological groupoid G is étale if G(0) is locally compact
Hausdorff, and the range map (or equivalently the source map) is a local
homeomorphism.

There exist alternate, equivalent definitions for étale groupoids. Interest-
ingly, Resende shows in [Res07, Theorem 5.18] that a groupoid G is étale
if and only if its collection of open sets form a semigroup under pointwise
multiplication, with identity being given by the open unit space. This fur-
ther strengthens the notion that groupoid theory and semigroup theory
are intimately linked, particularly when it comes to their connection to
C∗-algebra theory.

The following facts about étale groupoids are immediate, but crucial.

Proposition 2.2.3. Let G be an étale groupoid. Then,

(i) The unit space G(0) is open in G.

(ii) There exists a basis for G consisting of open bisections.

(iii) For each x ∈ G(0), both Gx and Gx are discrete in the subspace topol-
ogy inherited from G.

Proof. (i) Since G is étale, for every γ ∈ G, we can find a neighbourhood Uγ

of γ such that r|Uγ is a homeomorphism, and r(Uγ) is open in G(0). Then⋃
γ∈G r(Uγ) = G(0) is open as an arbitrary union of open sets.

(ii) We use [Mun03, Lemma 13.1]. Suppose γ ∈ G is contained in the open
set W . We wish to find an open bisection B ⊆ W containing γ. Since r and
s are local homeomorphisms, there exist open sets Uγ and Vγ containing γ
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such that r|Uγ is a homeomorphism, and s|Vγ is a homeomorphism. Then,
B = Uγ ∩ Vγ ∩W is an open bisection containing γ and contained in W .

(iii) For x ∈ G(0) and γ ∈ Gx, let U be an open bisection containing γ. Then
U ∩ Gx = {γ} since U is a bisection, and {γ} is open in Gx. A similar
argument shows that if γ ∈ Gx, then {γ} is open in Gx. Hence, Gx

x = Gx∩Gx

is discrete.

Let G be an étale groupoid. We say that G is effective if Int(Iso(G)) ⊆ G(0).
Since one has the reverse inclusion for free, this is equivalent to requir-
ing Int(Iso(G)) = G(0) [CB20, Section 7]. We say that G is topologically free
if Int(Iso(G) \ G(0)) = ∅ (this is what is defined as effective in [BCFS14,
Section 2]). One can think of being topologically free as a form of being
weakly effective - the two definitions coincide if G is Hausdorff, and other-
wise effective implies topologically free (see [CEP+19, Example 5] for an
example of the converse implication failing). We also have the notion of G
being topologically principal, whereby the collection {x ∈ G(0) : Gx

x = {x}} is
dense in G(0). See [AdCC+23, Remark 2.1] for further discussion on these
relationships.

Furthermore, we say a set U ⊆ G is invariant if d(γ) ∈ U =⇒ r(γ) ∈ U

for any γ ∈ G. If G admits no non-trivial open invariant subsets, then G is
minimal.

Lemma 2.2.4. Let G be an étale groupoid. If G is topologically principal, then it
is topologically free.

Proof. Suppose that G is not topologically free. Then Int(Iso(G) \ G(0)) is a
non-empty open set. Since the source map is open, d(Int(Iso(G) \ G(0))) is
a non-empty open set in the unit space consisting of units with non-trivial
isotropy. Hence, G is not topologically principal.



2.2. ÉTALE GROUPOIDS 17

Effective

Topologically Free Topologically Principal

Hau
sd

orff

Second
Countable

Second Countable

Hausdorff

Figure 2.3: Relationships between the properties of being effective, topo-
logically free and topologically principal.

2.2.2 Examples

Mention of the following examples can be found in [Sim18, Example
2.1.15, 2.1.16]. We note that the Deaconu-Renault groupoid was originally
introduced in [Dea95], but we follow Sims’ construction.

Example 2.2.5 (Transformation Groupoid). The action of any groupG on a
set X naturally gives rise to the transformation groupoid, denoted G⋉X .
This construction is discussed in detail in [CH20, Example 3.3]. We briefly
describe the topology on G ⋉X in the case that G is a discrete group and
X is locally compact Hausdorff, and show that G⋉X is étale.

Under these assumptions, we can giveG⋉X the product topology. Hence,
a set U × V ⊆ G is a basic open set if and only if U is open in G and
V is open in X . We claim that G is étale. Let (γ, x) ∈ G, and consider
the neighbourhood {γ} × X . If (γ, x), (γ, y) ∈ {γ} × X with x ̸= y, then
d(γ, x) = x ̸= y = d(γ, y). Hence, s|{γ}×X is injective.
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If {e}×U ⊆ {e}×X is open, then r|−1
{γ}×U({e}×U) = {γ}× γ−1 ·U , which

is open, and so r|{γ}×U is continuous. The inverse mapping of r|{γ}×U is
r−1|{γ}×U which takes (e, x) to (γ, γ−1 · x). If {γ} × U is open in {γ} × X ,
then r|{γ}×U({γ} × U) = {e} × γ · U , which is also open, and so r−1|{γ}×U

has a continuous inverse. A similar set of arguments show that the source
map is a local homeomorphism. Hence, G⋉X is étale.

Example 2.2.6 (Deaconu-Renault Groupoid). If G is an abelian group, S ⊆
G a subsemigroup containing 0, and X a set, we can construct another
groupoid associated to a particular action of S on X called the Deaconu-
Renault groupoid. As above, we refer the reader to [Sim18, Example
2.1.16] for details of this construction, and we limit our discussion to the
topology, and establishing that the Deaconu-Renault groupoid is étale.

Let G be a discrete abelian group, X a locally compact Hausdorff space,
and G the associated Deaconu-Renault groupoid. There then exists a basis
for G consisting of open sets of the form

Z(U, p, q, V ) = {(x, p− q, y) : x ∈ U, y ∈ V, p · x = q · y},

and in this way is an étale groupoid. In particular, for any groupoid ele-
ment (x, p − q, y) ∈ G, one can choose neighbourhoods U ∋ x and V ∋ y

such that θp : U → p · U and θq : V → q · V are homeomorphisms. Let-
ting W := p · U ∩ q · V , we can define U ′ = {u ∈ U : p · u ∈ W} and
V ′ = {v ∈ V : q · v ∈ W}, and it follows that the open set Z(U ′, p, q, V ′) is
an open neighbourhood of (x, p− q, y) on which the range map is a home-
omorphism.



Chapter 3

Inverse Semigroups

In the opening of his influential book “Groupoids, Inverse Semigroups
and their Operator Algebras”, Paterson explains, “In recent years, it has
become increasingly clear that there are important connections relating
three mathematical concepts which a priori seem to have nothing much
in common. These are groupoids, inverse semigroups and operator alge-
bras” [Pat99]. In particular, one can associate C∗-algebras to inverse semi-
groups via their representations, or alternatively, one can construct var-
ious topological groupoids from an inverse semigroup which often turn
out to be étale, or even ample. Our interest will turn to the naturally con-
structed universal groupoid of an inverse semigroup (commonly called
Paterson’s groupoid). Paterson showed this groupoid has full and reduced
C∗-algebras isomorphic to those of the original inverse semigroup.

3.1 Preliminaries

We begin this chapter by introducing some basic theory about inverse
semigroups, the details of which are abundant in literature, but we follow
[Law98] and [Pat99].

19



20 CHAPTER 3. INVERSE SEMIGROUPS

Definition 3.1.1. An inverse semigroup is a set S equipped with an associa-
tive binary operation S × S → S such that for each s ∈ S there exists a
unique s∗ ∈ S (called the inverse of s) satisfying

s∗ss∗ = s∗ and ss∗s = s.

We say an inverse semigroup S is an inverse semigroup with 0 if it contains
an element 0 such that 0s = s0 = 0 for all s ∈ S. Similarly, we say that S is
an inverse semigroup with 1 if it contains an element 1 such that 1s = s1 = s

for all s ∈ S. General inverse semigroups need not contain either of these
elements.

By inverse sub-semigroup, we mean a subset S ′ of S such that S ′ is an inverse
semigroup with respect to the binary operation on S . In this case, we write
S ′ ≤ S.

Every inverse semigroup S admits an inverse sub-semigroup consisting of
its idempotents - that is, those elements e ∈ S such that e2 = e. We denote
the collection of idempotents of S by E(S).

Before establishing some useful identities of inverse semigroups, we first
prove a number of standard properties of idempotents.

Lemma 3.1.2. Let S be an inverse semigroup, with idempotents E(S).

(I1) If s ∈ S, then s∗s, ss∗ ∈ E(S).

(I2) If e ∈ E(S), then e∗ = e.

(I3) For all e, f ∈ E(S), we have ef = fe.

Proof. (I1) Let s ∈ S. Associativity of multiplication gives us

(s∗s)(s∗s) = s∗(ss∗s) = s∗s.

Hence, s∗s ∈ E(S). Replacing s with s∗ gives us ss∗ ∈ E(S).
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(I2) Take some e ∈ E(S). Since e is an idempotent, en = e for any n ∈ N.
Thus, we have eee = e, and so e∗ = e.

(I3) Take e, f ∈ E(S). We first claim that f(ef)∗e is an idempotent. We
have

(f(ef)∗e)(f(ef)∗e) = f((ef)∗(ef)(ef)∗)e = f(ef)∗e.

Thus, f(ef)∗e ∈ E(S). Next, we show that f(ef)∗e and ef are inverses of
one another. We have

(f(ef)∗e)(ef)(f(ef)∗e) = f(ef)∗(ee)(ff)(ef)∗e = (f(ef)∗e)(f(ef)∗e) =

f((ef)∗ef(ef)∗)e = (f(ef)∗e).

Similarly, we have

(ef)(f(ef)∗e)(ef) = e(ff)(ef)∗(ee)f = (ef)(ef)∗(ef) = ef.

Uniqueness of inverses then implies that f(ef)∗e and ef are inverses of
one another. But f(ef)∗e ∈ E(S), and so ef is an idempotent. Now,

ef(fe)ef = e(ff)(ee)f = (ef)(ef) = ef,

due to ef being an idempotent, implying fe is an inverse of ef . The fact
that inverses are unique, along with (I2), then gives ef = fe.

Note that every idempotent e ∈ E(S) can be written as s∗s for some s ∈ S
- for instance, take s = e, such that e∗e = e.

The following results regarding inverse semigroup elements follow from
the above properties of idempotents.

Lemma 3.1.3. Let S be an inverse semigroup, and let s, t ∈ S. Then,

(S1) (s∗)∗ = s.

(S2) (st)∗ = t∗s∗.
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(S3) If e ∈ E(S) then ses∗, s∗es ∈ E(S).

Proof. (S1) From the definition of inverses, we have s∗ss∗ = s∗, and also
s∗(s∗)∗s∗ = s∗. Uniqueness of inverses then gives (s∗)∗ = s.

(S2) We claim that (t∗s∗) is an inverse for st. Since s∗s and t∗t are idempo-
tents, by (I3), we have

(st)(t∗s∗)(st) = stt∗s∗st = ss∗stt∗t = st.

Hence, t∗s∗ is the inverse of st.

(S3) Let e ∈ E(S) and s ∈ S. We have

(ses∗)(ses∗) = (ss∗s)(ee)s∗ = ses∗.

Hence, ses∗ is an idempotent. An identical argument using s∗ in place of s
gives us that s∗es ∈ E(S).

Throughout the remainder of this thesis, we employ Lemma 3.1.2 and
Lemma 3.1.3 without further justification.

3.1.1 The Natural Partial Order

For any inverse semigroup S, there exists a natural partial order, whereby
if s, t ∈ S , then we say s ≤ t if and only if there exists an idempotent
e ∈ E(S) such that s = te (equivalently, if there exists an idempotent
f ∈ E(S) such that s = ft). This partial order simplifies when restricted
to the idempotents - in particular, if e, f ∈ E(S) then e ≤ f if and only if
e = ef = fe.

Let (P,≤) be a partially-ordered set. We say P is a lattice if P admits all
pairwise meets and joins (these are also called infimums and supremums,
respectively). In particular, admitting pairwise meets means if a, b ∈ P ,
then there exists x ∈ P such that x ≤ a, b, and if y is another element such
that y ≤ a, b then y ≤ x. Dually, admitting pairwise joins means if a, b ∈ P ,
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then there exists x ∈ P such that x ≥ a, b, and if y is another element such
that y ≥ a, b then y ≥ x, and we write x = a ∨ b. It follows that if P is a
lattice, then P admits all finite meets and joins.

A meet-semilattice (respectively, a join-semilattice) is a partially ordered set
P such that P admits all finite meets (respectively, all finite joins). In par-
ticular, all lattices are semilattices, but not all semilattices are lattices.

Given an inverse semigroup S, the set of idempotents of S form a meet-
semilattice, whereby any two elements e, f ∈ E(S) admit an infimum e∧ f ,
which in this case is given by ef . To see this, notice that ef = (ef)f =

e(ef), hence ef ≤ e, f . If g ≤ e, f then ge = gf = g, which means g(ef) =
(ge)f = gf = g, and so g ≤ ef . Throughout, unless stated otherwise, if e, f
are elements of a meet semilattice E, then ef will denote the meet e ∧ f .

In general, S itself doesn’t exhibit a semilattice structure, as not all pairs of
elements admit a greatest lower bound. There exists a particular class of
inverse semigroups, namely E-unitary inverse semigroups, for which their
entire structure can be characterized as a semilattice [Law98, Lemma 4.7].
In particular, we say that an inverse semigroup S is E-unitary if e ∈ E(S)
and e ≤ s implies s ∈ E(S). We say that S is E∗-unitary if the previous
statement holds for all non-zero e [Law98, p. 20].

The following lemma is from [Pat99].

Lemma 3.1.4. [Pat99, Lemma 2.1.1] Let s ∈ S and e ∈ E(S). Then ses∗ ≤ ss∗

and s∗es ≤ s∗s.

Proof. By inspection, one has

(ses∗)ss∗ = se(s∗ss∗) = ses∗,

from which the first result follows - the second is immediate after replacing
s with s∗ and employing (S1).
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Suppose S is an inverse semigroup with 0, and let e, f ∈ E(S). If there
exists g such that 0 ̸= g ∈ E(S) and g ≤ e, f then we write e ⋒ f , and say
that e and f intersect. Otherwise, we say that e and f are disjoint.

Example 3.1.5. The prototypical example of an inverse semigroup is as fol-
lows. Let X be any set, and denote by I(X) the set of partial bijections on
X . Then I(X) is an inverse semigroup, called the symmetric inverse semi-
group on X , where the product of elements is the composition of functions
on the greatest possible domain. In particular, if f, g ∈ I(X) are partial
bijections on X , then their product fg is a partial bijection with domain
g−1(ran(g) ∩ dom(f)). Idempotents are the identity functions on their do-
main.

g(dom(fg))

g f

Figure 3.1: Representation of a product in a symmetric inverse semigroup.

If f, g ∈ I(X) are partial bijections, then f ≤ g if and only if f is equal
to the restriction of g to some subset of dom(g). That is, if there exists an
idempotent e ∈ E(I(X)) such that f = g ◦ e. If e, f are idempotents of
I(X) then the partial order simply becomes set inclusion, such that e ≤ f

if and only if dom(e) ⊆ dom(f).

3.1.2 Semigroup Homomorphisms

As one would expect, we can define semigroup homomorphisms which
behave appropriately with respect to the inverse semigroup structure. These
will be used to define inverse semigroup actions, which are essential in the
remainder of this thesis.
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Let S,W be semigroups. Then θ : S → W is a semigroup homomorphism if,
for all x, y ∈ S, one has

θ(xy) = θ(x)θ(y).

Lemma 3.1.6. Let S,W be inverse semigroups and let θ : S → W be a semigroup
homomorphism.

(i) If s ∈ S, then θ(s∗) = θ(s)∗.

(ii) For all e ∈ E(S), one has θ(e) ∈ E(W).

(iii) ran(θ) ≤ W .

Proof. (i) Let x ∈ S. We have

θ(x)θ(x∗)θ(x) = θ(xx∗x) = θ(x),

and so θ(x∗) is the inverse of θ(x).

(ii) Suppose e ∈ E(S), and without loss of generality, let e = s∗s for some
s ∈ S. Then, using part (i), we have

θ(e) = θ(s∗s) = θ(s∗)θ(s) = θ(s)∗θ(s),

and thus θ(e) ∈ E(W).

(iii) We first check that ran(θ) is closed under multiplication. Let θ(s), θ(t) ∈
ran(θ) for some s, t ∈ S. Then θ(s)θ(t) = θ(st) ∈ ran(θ). Similarly, if
θ(s) ∈ ran(θ), then θ(s)∗ = θ(s∗) ∈ ran(θ), and so ran(θ) is closed under
inversion.

3.1.3 Boolean Inverse Semigroups

We refer the reader to [BBS84, Chapter IV §1] for the basics on Boolean
algebras.

A Boolean algebra is a 5-tuple (B,∧,∨,′ , 0, 1) whereby ∧,∨ are binary oper-
ations in B called meet and join, respectively, ′ is a unary operation on B
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called complementation, and 0, 1 are distinguished elements such that the
following hold.

(i) (B,∨,∧) is a distributive lattice, in the sense that the meet and join
operators distribute over one another.

(ii) For all x ∈ B, one has x ∧ 0 = 0 and x ∨ 1 = 1.

(iii) For all x ∈ B, x ∧ x′ = 0 and x ∨ x′ = 1.

A generalized Boolean algebra is a Boolean algebra that may not contain a 1.
It follows from B being complemented and distributive that it is relatively
complemented - in particular, if s, t ∈ B are such that s ≤ t, then there
exists x ∈ B such that x ∧ s = 0 and x ∨ s = t. In this case, we write
x = t \ s. If E is a lattice, then for any e, f ∈ E, the join of e and f is their
least upper bound, or supremum, written e ∨ f . Conversely, the meet of e
and f is their greatest lower bound, or infimum, written e ∧ f . If S is an
inverse semigroup, recall that we have e ∧ f = ef for all idempotents e, f .

The following details on Boolean inverse semigroups can be found in [Ste23,
Section 2.1] and [Weh17, Section 3]. Let S be an inverse semigroup with
0. We say that s, t ∈ S are compatible and write s ∼c t if st∗ and s∗t are
both idempotents. On the other hand, if st∗ = s∗t = 0, then we say s

and t are orthogonal and write s ⊥ t. Notice that since 0 is an idempotent,
orthogonality implies compatibility.

We say that an inverse semigroup S with 0 is a Boolean inverse semigroup if
E(S) is a generalized Boolean algebra, and all compatible elements s ∼c t

admit a join. If S is a Boolean inverse semigroup, then in particular, this
means that E(S) is distributive, and idempotents admit relative comple-
ments.

We refer to a section of a result of Wehrung below.

Remark 3.1.7. Note that for arbitrary compatible elements s, t ∈ S, the meet
s∧ t doesn’t necessarily coincide with the product st, as it does with idem-
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potents. For a characterization of the meet of arbitrary inverse semigroup
elements, see [Weh17, Equation 3.1.3]. In the following proposition, we
denote the semigroup product by “·” for clarity.

Proposition 3.1.8. [Weh17, Proposition 3.1.9] The following statements
hold for any distributive inverse semigroup S with 0.

(1) For any nonempty finite compatible subset {b1, . . . , bn} of S, the join∨n
i=1 bi exists and the following statements hold.

(i) For every a ∈ S, a · (
∨n

i=1 bi) =
∨n

i=1(a · bi) and (
∨n

i=1 bi) · a =∨n
i=1(bi · a).

(ii) For every a ∈ S, a∧
∨n

i=1 bi exists if and only if each a∧ bi exists,
and then a ∧

∨n
i=1 bi =

∨n
i=1(a ∧ bi).

3.1.4 Examples

Example 3.1.9. We continue investigating symmetric inverse semigroups,
as introduced in Example 3.1.5. Let X be a set. One can see that if s, t ∈
I(X) are partial bijections, then s ∼c t if and only if

s|dom(s)∩dom(t) = t|dom(s)∩dom(t).

That is, if they agree on their common domain. Furthermore, s ⊥ t if and
only if dom(s) ∩ dom(t) = ∅ and ran(s) ∩ ran(t) = ∅.

s

t

s(dom(s) ∩ dom(t))

= t(dom(s) ∩ dom(t))

Figure 3.2: A visual representation of two compatible partial bijections.
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In general, any finite symmetric inverse semigroup is Boolean [Weh18,
Section 2].

3.2 Inverse Semigroup Actions

The following definitions can be found in [Exe08, Section 4].

Definition 3.2.1. Let S be a semigroup and X a locally compact Hausdorff
space. An action of S on X is a semigroup homomorphism

θ : S → I(X)

satisfying the following.

(A1) For every s ∈ S, θ(s) is continuous and dom(θ(s)) is open in X .

(A2) Whenever x ∈ X , there exists s ∈ S such that x ∈ dom(θ(s)).

For each s ∈ S, we let θs : X → X denote the partial bijection θ(s). Hence,
the action can also be thought of as a function⋃

s∈S

({s} × dom(θ(s))) →
⋃
s∈S

ran(θ(s)) = X.

In this way, if x ∈ dom(θs) then

(s, x) 7→ θs(x).

For an idempotent e ∈ E(S), we denote by De the domain and range of θe.
Notice also that the map θs for some s ∈ S has domainDs∗s and rangeDss∗ .
This is because dom(θs) = dom(θs∗θs), and similarly, ran(θs) = ran(θsθs∗).

The following lemmas follow from straightforward calculations, the de-
tails of which can be found in [Exe08, Section 4].

Lemma 3.2.2. Let s ∈ S and e ∈ E(S).

(i) θsθs∗θs = θs.



3.2. INVERSE SEMIGROUP ACTIONS 29

(ii) θs∗θsθs∗ = θs∗ .

(iii) θs∗ = θ−1
s .

(iv) ran(θs) = dom(θs∗).

(v) θe = iddom(θe).

(vi) dom(θs) = dom(θs∗s) and ran(θs) = ran(θss∗).

3.2.1 Groupoids of Germs

The following groupoid of germs construction follows that of [Exe08] and
[MR10].

Consider an arbitrary locally compact Hausdorff space X under an action
by S. We define a set of ordered pairs

Ω = {(s, x) ∈ S ×X : x ∈ Ds∗s}.

That is, Ω is the set of pairs consisting of elements s ∈ S along with points
x ∈ Ds∗s. We define an equivalence relation on Ω by setting (s, x) ∼ (t, y) if
and only if x = y, and there exists some idempotent e ∈ E(S) such that x ∈
De and se = te. Loosely speaking, two pairs (s, x) and (t, x) are considered
equivalent if s and t act identically on some open neighbourhood of x
corresponding to the domain of an idempotent.

The quotient Ω/ ∼ is called the groupoid of germs of the action of S on X ,
and is denoted S ⋉X . The composable pairs of S ⋉X are

(S ⋉X)(2) = {([s, x], [t, y]) ∈ (S ⋉X)× (S ⋉X) : x = θt(y)},

and the inverse operation is defined by [s, x]−1 = [s∗, θs(x)]. Composition
is defined as [s, x][t, y] = [st, y] for any ([s, x], [t, y]) ∈ (S ⋉ X)(2), and it
follows that the source and range maps are given by

d([s, x]) = [s∗s, x] and r([s, x]) = [ss∗, θs(x)].
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The following proposition is stated without proof in [Exe08, Proposition
4.11]. We provide details below.

Proposition 3.2.3. The construction S ⋉ X is a groupoid with the opera-
tions as defined as above, and (S ⋉X)(0) ∼= X under the correspondence

[e, x] ∈ (S ⋉X)(0) 7→ x ∈ X,

where e is an idempotent such that x ∈ De.

Proof. We check that S ⋉ X satisfies the groupoid formulation stated in
Definition 2.1.1.

First, we check that for any γ ∈ S ⋉ X , we have (γ−1)−1 = γ. Let [s, x] ∈
S ⋉X . Then,

([s, x]−1)−1 = ([s∗, θs(x)])
−1

= [(s∗)∗, θs∗(θs(x))]

= [s, θ−1
s (θs(x))]

= [s, x].

Next, we check that if ([s, x], [t, y]) and ([t, y], [u, z]) are in (S ⋉ X)(2), then
so are ([s, x][t, y], [u, z]) and ([s, x], [t, y][u, z]), and associativity holds. The
first claim is straightforward to check, as

([s, x][t, y], [u, z]) = ([st, y], [u, z]),

and ([t, y], [u, z]) ∈ (S ⋉ X)(2) implies θu(z) = y, and so ([st, y], [u, z]) ∈
(S ⋉X)(2). Similarly,

([s, x], [t, y][u, z]) = ([s, x], [tu, z]),

and θtu(z) = θt(θu(z)) = θt(y) = x as needed. We can then see that

([s, x][t, y])[u, z] = [st, y][u, z]

= [stu, z]

= [s, x][tu, z]

= [s, x]([t, y][u, z]).
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For the last groupoid condition, we begin by noticing [s, x][s, x]−1 ∈ (S ⋉
X)(2) since θ−1

s (θs(x)) = x. Furthermore, (st)∗st is an idempotent satisfying
the following.

(s∗st)((st)∗st) = s∗stt∗s∗st

= tt∗s∗ss∗st

= tt∗s∗st

= t((st)∗st).

That is, if x ∈ D(st)∗st, then [s∗st, x] = [t, x]. It follows that

[s, x]−1([s, x][t, y]) = [s∗, θs(x)][st, y]

= [s∗st, y]

= [t, y].

Similarly, the following equivalence of germs is witnessed by the idempo-
tent tt∗ - notice that stt∗ = stt∗tt∗, and so we have

([s, x][t, y])[t, y]−1 = [st, y][t∗, θt(y)]

= [stt∗, θt(y)]

= [s, x].

Hence S ⋉X is a groupoid.

It remains to show that (S ⋉ X)(0) ∼= X under the given correspondence.
Let ϕ : (S ⋉ X)(0) → X be the map given by [e, x] 7→ x. We claim that ϕ
is a bijection. If x ∈ X , then there exists s ∈ S such that x ∈ Ds∗s. Thus,
[s∗s, x] 7→ x, and so ϕ is bijective. Now, suppose [e, x], [f, x] ∈ S ⋉X . Then
x ∈ De ∩Df = Def , and eef = fef = ef , implying [e, x] = [f, x]. Hence, ϕ
is injective.

Henceforth, for any [s, x] ∈ S ⋉ X , we identify d([s, x]) = [s∗s, x] with
x ∈ X , and r([s, x]) = [ss∗, θs(x)] with θs(x) ∈ X .
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3.2.2 Groupoids of Germs are Étale

We now turn S ⋉X into a topological groupoid by defining a basis on it.
For any s ∈ S and open U ⊆ Ds∗s (with respect to the topology on X) we
define

Θ(s, U) = {[s, x] ∈ S ⋉X : x ∈ U}.

We attribute details of the following to [Exe08, Proposition 4.13].

Proposition 3.2.4. The collection of sets Θ(s, U) for s ∈ S and U ⊆◦ Ds∗s is
a basis for the topology on S ⋉X .

Proof. If [s, x] ∈ S ⋉ X , then x ∈ Ds∗s which is an open set. Thus, [s, x] ∈
Θ(s,Ds∗s).

It remains to show that if s, t ∈ S , with U, V open subsets of Ds∗s and Dt∗t

respectively, and [r, z] ∈ Θ(s, U) ∩Θ(t, V ), then there exists an idempotent
e and open set W ⊆ D(re)∗re such that

[r, z] ∈ Θ(re,W ) ⊆ Θ(s, U) ∩Θ(t, V ).

Since [r, z] ∈ Θ(s, U) ∩ Θ(t, V ), we have [r, z] = [s, x] = [t, y] for some
x ∈ U and y ∈ V . This implies z = x = y, and furthermore there exist
e, f ∈ E(S) such that z ∈ De ∩Df , re = se and rf = tf . Since idempotents
commute, we can say without loss of generality that re = se = te. Let
W = U ∩ V ∩D(re)∗re. Then

z ∈ Dr∗r ∩De = Dr∗re = D(re)∗re,

which follows from

(re)∗re = e∗r∗re = r∗re∗e = r∗re.

Hence, we have z ∈ W and so z ∈ Θ(re,W ). It remains to show that
Θ(re,W ) ⊆ Θ(s, U) ∩Θ(t, V ). Let [re, x] ∈ Θ(re,W ) be arbitrary. Then

[re, x] = [se, x] = [s, x],



3.2. INVERSE SEMIGROUP ACTIONS 33

and similarly,
[re, x] = [te, x] = [t, x],

and so [re, x] ∈ Θ(s, U) ∩Θ(t, V ) as desired.

This shows that the collection of sets of the form Θ(s, U) form a basis for
S ⋉ X . One can verify that with respect to this topology, the multiplica-
tion and inverse maps are continuous, and hence S ⋉ X is a topological
groupoid.

Henceforth, if s ∈ S, we denote Θs the set

Θs := Θ(s,Ds∗s).

Proposition 3.2.5. [Exe08, Proposition 4.14] With the topology generated
by the basis above, S ⋉X is a topological groupoid.

Since we are interested in the class of étale groupoids, we would like for
S ⋉ X to also be an étale groupoid. First, we construct a local correspon-
dence between open subsets of X and basic open sets of S ⋉X .

Proposition 3.2.6. For some s ∈ S and open set U ⊆ Ds∗s, the map

ϕ : U → Θ(s, U), x 7→ [s, x]

is a homeomorphism.

Proof. It follows directly from the construction of the equivalence classes
[s, x] that ϕ is bijective. Note that ϕ has a well-defined inverse, such that if
s ∈ S and [s, x] ∈ S ⋉X , then

ϕ−1([s, x]) = x,

which is precisely the source mapping. Let V ⊆ U be open. Then ϕ(V ) =

{[s, x] : x ∈ V } = Θ(s, V ) which is a basis element, and so is open. There-
fore, ϕ is an open map - that is, ϕ−1 is continuous). We now show that ϕ is
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continuous. Let ϕ(x) = [s, x] be in some open W ⊆ Θ(s, U). Then, there is
some basis element Θ(t, V ) such that

[s, x] ∈ Θ(t, V ) ⊆ W.

Hence, we have that x ∈ V ⊆ Dt∗t, and there exists an idempotent e ∈
E(S) such that se = te. For any y ∈ De ∩ V ,

ϕ(y) = [s, y] = [t, y] ∈ Θ(t, V ) ⊆ W,

indicating ϕ(De ∩ V ) ⊆ W . But x ∈ De ∩ V , and so ϕ is continuous.

The following is a special case of the above result.

Corollary 3.2.7. The identification of (S ⋉X)(0) with X given by

x 7→ [e, x],

where e is any idempotent such that x ∈ De, is a homeomorphism.

One can show that our basic open sets are in fact bisections [Exe08, Propo-
sition 4.18].

Proposition 3.2.8. For every s ∈ S and open U ⊆ Ds∗s, the set Θ(s, U) is
an open bisection.

Proof. The source map equates with ϕ−1 when restricted to Θ(s, U), and so
is injective. Regarding the range map, we see that for x ∈ Θ(s, U), we have

r([s, x]) = θs(x) = (θs ◦ d)(x),

and so is injective, being the composition of two injective maps.

We can now show the following result, which is stated in [Exe08], but we
fill in the details.

Proposition 3.2.9. The groupoid of germs S ⋉X is an étale groupoid.
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Proof. Since X is Hausdorff and locally compact, (S ⋉ X)(0) is also Haus-
dorff and locally compact, being identified with X via a homeomorphism.
If [s, x] ∈ (S ⋉X), then there exists some open bisection Θ(s, U) such that
[s, x] ∈ Θ(s, U). Then, the range and source maps restricted to Θ(s, U) are
homeomorphisms. Hence, S ⋉X is étale.

3.2.3 Relationships Between S and S ⋉ G(0)

There is a clear relationship between the fixed points of the action of an
inverse semigroup on a locally compact Hausdorff space, and the isotropy
subgroupoid of the arising groupoid of germs. In the literature regarding
these actions, such as in [KM21, Section 2.4], [CB20, Section 7] and [EP16,
Section 4], the action of an inverse semigroup S on a spaceX is called topo-
logically free, effective, or topologically principal, if the groupoid of germs
1 is topologically free, effective, or topologically principal, respectively. In
this section, we determine under what conditions an action satisfies these
conditions.

Recall that an inverse semigroup S is E∗-unitary if, whenever e ∈ E(S)
and s ∈ S such that 0 < e ≤ s, then s ∈ E(S) [Law98, p. 19].

Let S be an inverse semigroup, X a locally compact Hausdorff space, and
θ an action of S on X with groupoid of germs S ⋉X .

Proposition 3.2.10. If S is E∗-unitary, then S ⋉X is Hausdorff.

Proof. Toward a contradiction, suppose that S ⋉ X is not Hausdorff. By
Proposition 2.2.1, this is equivalent to (S⋉X)(0) not being closed , but note
from Corollary 3.2.9 that it is still open due to S ⋉ X being étale. Since
(S ⋉ X)(0) is not closed, we have ∂(S ⋉ X)(0) ̸= ∅, and since (S ⋉ X)(0) is
open, ∂(S⋉X)(0)∩(S⋉X)(0) = ∅ [Sim63, Section 17]. If [s, x] ∈ ∂(S⋉X)(0),

1This groupoid is called the transformation groupoid in [KM21].
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then [s, x] ∈ S ⋉X \ (S ⋉X)(0). Thus, s is a non-idempotent of S. To see
this, using Corollary 3.2.7, notice that there exists no e ∈ E(S) such that
x ∈ De and se = e. Consdering s∗s ∈ E(S), we have x ∈ Ds∗s, and so we
must have ss∗s = s ̸= s∗s.

Let Θ(s, A) be an open neighbourhood of [s, x], where A ⊆ Ds∗s is open
and x ∈ A. By definition of the boundary, Θ(s, A) contains some unit
[e, z] ∈ (S⋉X)(0) where e is an idempotent and z ∈ De. But [e, z] ∈ Θ(s, A),
and so [e, z] = [s, w] for some w ∈ A.

By definition of germ equivalence, we have that z = w and there exists
some non-zero idempotent e′ such that ee′ = se′. Then, ee′e = se′e which
implies ee′ = see′, and so s ≥ ee′. Since S is E∗-unitary, this implies s is
an idempotent, which contradicts the fact that [s, x] lies outside (S⋉X)(0).
Hence, S ⋉X is Hausdorff.

Recall that if S ⋉ X is topologically principal then it is topologically free
[CEP+19]. It is known that in the case where S⋉X is second-countable, ef-
fective implies topologically principal, and upon the addition of the Haus-
dorff assumption, all three conditions become equivalent.

If θs(x) = x, then we say s is a stabilizer of x, and we say s is a non-trivial
stabilizer of x if s /∈ E(S). Following [CB20, Definition 7.2], we say that x
is a fixed point of s ∈ S if θs(x) = x, and we say that x is a trivially fixed point
of s if there exists an idempotent e ≤ s such that x ∈ De. In this case, one
has

θs(x) = θs(θe(x)) = θse(x) = θe(x) = x,

and so x is indeed a fixed point of s. We denote by Fix(s) and TFix(s)

the set of fixed points and the set of trivially fixed points of s, respectively.
We note that Fix(s) corresponds to elements in Iso(G), whereas elements
of TFix(s) correspond to units in G(0). This motivates us to consider the
non-trivially fixed points, Fix(s) \ TFix(s). Hence, we define a family of
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sets as follows.

Fs := {x ∈ Ds∗s : x ∈ Fix(s) \ TFix(s)}, s ∈ S.

That is, Fs is the set of “non-trivially” fixed points of s. Furthermore, we
define

F :=
⋃
s∈S

Fs.

Notice that F is exactly the collection of units in the groupoid of germs
with non-trivial isotropy.

The following result is adapted from [EP16, Theorem 4.7].

Proposition 3.2.11. The groupoid S⋉X is effective if and only if for every
non-idempotent s ∈ S, the interior of Fix(s) coincides with TFix(s).

Proof. We assume S ⋉ X is effective. Since TFix(s) is open in Fix(s) (see
[EP16, Equation 4.2]), we automatically have TFix(s) ⊆ Int(Fix(s)), so it
suffices to show the reverse inclusion holds. Let x ∈ Int(Fix(s)), and so
there exists an open set U ∋ x such that U ⊆ Fix(s). That is, for every z ∈
U , one has θs(z) = z. This corresponds to the open set Θ(s, U) ⊆ Iso(S⋉X)

in S⋉X , and so Θ(s, U) ⊆ Int(Iso(S⋉X)). Since S⋉X is effective, we have
Θ(s, U) ⊆ (S ⋉ X)(0), and in particular [s, x] ∈ (S ⋉ X)(0), which implies
[s, x] = [e, x] for some idempotent e. Hence, there is some idempotent e′

such that x ∈ De′ and se′ = ee′, from which we have

see′ = se′e = ee′e = ee′,

and so ee′ ≤ s. Furthermore, x ∈ De ∩ De′ = Dee′ , and so x ∈ TFix(s) as
desired. Thus, we have shown that TFix(s) = Int(Fix(s)).

Conversely, suppose that Int(Fix(s)) = TFix(s). It suffices to show that
Int(Iso(S ⋉ X)) ⊆ (S ⋉ X)(0), so let [s, x] ∈ Int(Iso(S ⋉ X)). Then, there
is some open set Θ(s, U) ∋ [s, x] contained in Iso(S ⋉ X) - that is, for all
z ∈ U , one has θs(z) = z. Therefore U ⊆ Int(Fix(s)) = TFix(s), and so



38 CHAPTER 3. INVERSE SEMIGROUPS

[s, x] ∈ TFix(s). Then there exists an idempotent e ≤ s such that x ∈ De.
Hence, e = se which implies ee = se, and so by germ equivalence we have
[s, x] = [e, x]. Then [s, x] ∈ (S⋉X)(0) as desired, and S⋉X is effective.

Proposition 3.2.12. The groupoid S⋉X is topologically free if and only if,
for each s ∈ S, the set Fs has empty interior.

Proof. Suppose S ⋉ X is not topologically free. Then, there exists some
[s, x] ∈ Int(Iso(S ⋉X) \ (S ⋉X)(0)). Hence, there is some open set Θ(s, U)

containing [s, x] and contained within Iso(S ⋉X) \ (S ⋉X)(0). This means
that U ⊆ Fix(s), and since Θ(s, U) is disjoint from (S ⋉ X)(0), if [s, z] ∈
Θ(s, U), then there exists no idempotent e such that z ∈ De and se = e.
That is, z /∈ TFix(s). This implies U ⊆ Fix(s) \TFix(s) = Fs, and so Fs has
non-empty interior.

Conversely, suppose there exists s ∈ S such that Int(Fs) ̸= ∅. Hence, there
exists an open set U ⊆ Fs = Fix(s) \ TFix(s), meaning that U consists
entirely of non-trivially fixed points of s. In particular, for every x ∈ U , we
have θs(x) = x, but there exists no idempotent e ≤ s with x ∈ De. This
implies that there exists no [e, x] ∈ (S ⋉ X)(0) such that [s, x] = [e, x], and
so [s, x] ∈ Iso(S ⋉X) \ (S ⋉X)(0). Thus, U ⊆ Int(Iso(S ⋉X) \ (S ⋉X)(0)),
and S ⋉X is not topologically free.

Proposition 3.2.13. The set F has empty interior in X if and only if S ⋉X

is topologically principal.

Proof. We begin by assuming that F has empty interior inX , and let Θ(e, U)

⊆ (S ⋉ X)(0) be open. Toward a contradiction, suppose that Θ(e, U) con-
sists entirely of non-trivial isotropy. That is, whenever x ∈ U , there exists
s ∈ S such that x ∈ Ds∗s and x ∈ TFix(s) ⊆ Fix(s). But then U ⊆ F ,
contradicting our assumption that F has empty interior.

Conversely, suppose that S ⋉X is topologically principal, and let U ⊆ F
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be open. For any x ∈ U , we have some s ∈ S such that x ∈ Fs - that is, x is
a non-trivially fixed point of s. This is true for any x we choose, and so U
consists entirely of non-trivially fixed points, which are exactly those units
with non-trivial isotropy. Then Θ(e, U) is entirely units with non-trivial
isotropy, which contradicts S ⋉X being topologically principal.

For any x ∈ (S⋉X)(0), the orbit of x is the set of units y such that, for some
γ ∈ S ⋉X , d(γ) = x and r(γ) = y. We denote this set by Orb(x).

We introduce a property of an action θ of S on a space X called local tran-
sitivity, which is a weaker condition than transitivity. We say an action is
locally transitive if, for every x ∈ X and non-empty open U ⊂ X , there
exists s ∈ S such that θs(x) ∈ U . As opposed to transitivity, which re-
quires that for every y ∈ X there exists some s ∈ S such that θs(x) = y,
local transitivity only requires that there exists some s ∈ S that carries x
arbitrarily close to y. An alternate formulation of local transitivity is for
every x, y ∈ X , there is a subcollection T ⊆ S such that the net (θs(x))s∈T
converges to y.

Recall that a set U ⊆ (S ⋉X)(0) is invariant whenever d(γ) ∈ U if and only
if r(γ) ∈ U for all γ ∈ S ⋉X .

Lemma 3.2.14. A set U ⊆ (S ⋉X)(0) is invariant if and only if (S ⋉X)(0) \ U
is invariant.

Proof. If U isn’t invariant, then GU ̸= GU . Without loss of generality, sup-
pose r(GU) ⊃ U . Since inverses exist, for any x ∈ r(GU) \ U we have
r(x) ∈ U , implying (S ⋉ X)(0) \ U isn’t invariant. The converse follows
similarly from taking complements.

Lemma 3.2.15. A groupoid S ⋉ X is minimal if and only if, for every x ∈
(S ⋉X)(0), Orb(x) is dense in (S ⋉X)(0).
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Proof. First, suppose that for any x ∈ (S ⋉ X)(0), Orb(x) is dense in the
unit space. Pick some open U ⊆ (S ⋉X)(0). If x ∈ U , then pick a different
V ⊆ (S ⋉ X)(0) \ U . So, we have x /∈ U . Since Orb(x) is dense, there is
some s ∈ S and [s, x] ∈ S ⋉X such that r([s, x]) ∈ U . Hence, U cannot be
invariant, and so S ⋉X is minimal.

Conversely, suppose S ⋉ X is minimal, and pick some x ∈ (S ⋉ X)(0).
We aim to show that Orb(x) is dense in (S ⋉ X)(0). Pick some open U ⊆
(S ⋉ X)(0) not containing x. We claim that the sets r(S ⋉ X) and U have
non-empty intersection. Since we can compose arrows, there exists no
γ ∈ S ⋉X such that d(γ) ∈ r(S ⋉X) and r(γ) ∈ (S ⋉X)(0) \ r(S ⋉X) and
so r(S ⋉ X) is in fact invariant. This implies the minimality of S ⋉ X , a
contradiction, meaning r(S ⋉X) ∩ U ̸= ∅ as desired.

Proposition 3.2.16. The action θ of S on X is locally transitive on X if and
only if S ⋉X is minimal.

Proof. Suppose S ⋉X is not minimal. Then, there is some x ∈ (S ⋉X)(0)

and open set U ⊆ (S ⋉X)(0) such that

{r([s, x]) : x ∈ Ds∗s} ∩ U = ∅.

In other words, for every u ∈ U , there is no arrow from x to u. Hence, U is
a set disjoint from Orb(x), and so S isn’t locally transitive.

Now, suppose S is not locally transitive. Then, there is some x ∈ X and
open U ⊆ X such that Orb(x) with respect to S is disjoint from U . Hence,
Orb(x) is not dense in (S ⋉X)(0), and so S ⋉X is not minimal.

While the equivalence between locally transitive and minimal is straight-
forward, it is useful as it provides a characterization of minimality in groupoids
with respect to the acting inverse semigroup, without needing to mention
the groupoid of germs.
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3.3 The Natural Action of Bis(G) on G(0)

The motivation for this section arose from wishing to provide full details of
the proof of [BM23, Proposition 4.12], which was also investigated by Exel
in [Exe08, Proposition 5.4]. This result shows that every étale groupoid
possesses an intrinsic inverse semigroup - its inverse semigroup of open
bisections - and shows that information about this inverse semigroup can
be discarded while retaining the ability to recover the original groupoid
as the groupoid of germs of a natural action on the unit space. In partic-
ular, the original groupoid can be recovered as long as the sub-semigroup
satisfies a basis-like condition called bisection wide2. This naturally leads
to an investigation of the more general case, where an inverse semigroup
acts on a locally compact Hausdorff space, giving rise to an étale groupoid
of germs, whereby it becomes natural to study the relationships between
properties of the inverse semigroup and the groupoid it produces.

Let G be an étale groupoid. We denote by Bis(G) the collection of open bi-
sections of G. This collection forms an inverse semigroup, where multipli-
cation and inversion are given point-wise - this fact is well-established in
the literature (see, for example, [Pat99, Proposition 2.2.4], [BM23, p. 23],
[CB20, Section 2.4]). There exists a natural action of Bis(G) on G(0) such
that the groupoid of germs of this action is isomorphic to G (see [BM23,
p. 23]). In fact, one can take a sufficiently large sub-semigroup S ⊆ Bis(G),
and achieve the same outcome.

Given an open bisection U ∈ Bis(G), since the source and range maps are
both open maps, the sets d(U) and r(U) are open in G(0). Furthermore, both
rU and dU are homeomorphisms on their domain. We denote by dU and rU
the restrictions of the domain and range maps to the set U , respectively.

W define an action of Bis(G) on G(0) whereby if S ∈ Bis(G) and x ∈ G(0),

2The authors of [Exe08], along with those of other literature discussing this property,
call it simply wide, but we append ”bisection” to distinguish it from our new condition.
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then
θS(x) = r(d−1

S (x)).

Proposition 3.3.1. Let S ∈ Bis(G). Then the correspondence x 7→ θS(x) as
described above is an action on G(0).

Proof. We first check that θSθT = θST for all S, T ∈ S . For x ∈ D(ST )∗(ST ),
we have

θS(θT (x)) = θS(r(d
−1
T (x))) = r(d−1

S (r(d−1
T (x)))).

Let γT := d−1
T (x) and γS := d−1

S (r(d−1
T (x))). Note that γT ∈ T and γS ∈ S.

So, we have r(γS) = d(γT ), and so via composition, there exists an arrow
γST ∈ ST such that s(γST ) = x and r(γ) = θS(θT (x)). Hence, θST = θSθT .

It remains to check that the domain of the action covers the unit space.
Since G(0) itself is an open bisection, one has that whenever x ∈ G(0), then
x ∈ DG(0) .

The following topological basis-like condition establishes precisely what
it means for a subsemigroup of Bis(G) to be large enough, and capture
enough information, to reconstruct G. This definition follows that of [BM23,
Definition 4.11], however we use the term “bisection wide” to distinguish
it from a later definition.

Definition 3.3.2. Let S ⊆ Bis(G) be an inverse subsemigroup. Then S is
bisection wide if it satisfies the following criteria.

(BW1) For every γ ∈ G, there exists B ∈ S such that γ ∈ B.

(BW2) For any γ ∈ G and B,B′ ∈ S, if γ ∈ B ∩B′ then there exists a B′′ ∈ S
such that γ ∈ B′′ ⊆ B ∩B′.

We have already seen that θ : Bis(G)× G(0) → G(0) is a well-defined action
on G(0) - we denote the groupoid of germs of this action by S ⋉ G(0), fol-
lowing [BM23]. The following result is [Exe08, Proposition 5.4] (see also
[BM23, Proposition 4.12]).
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Theorem 3.3.3. Let G be a locally compact, étale groupoid, and let S ⊆
Bis(G) be an inverse sub-semigroup. Then, the following are equivalent.

(i) S is bisection wide.

(ii) S ⋉ G(0) ∼= G.

Proof. We first assume that S is bisection wide. For any germ [U, x], since
U is a bisection, there is a unique γU ∈ U satisfying d(γU) = x. To prove
that such an element is indeed uniquely determined by the germ, suppose
that we have [U, x] = [V, x] for U, V ∈ S. Then, there is some idempotent
E ∈ E(S) with x ∈ DE = E and UE = V E. But d(γU) = x ∈ E and so
γU ∈ UE = V E, and thus γU ∈ V . This lets us define a well-defined map
ϕ : S ⋉ G(0) → G given by ϕ([U, x]) = γU , where γU is defined as above. In
other words,

ϕ([U, x]) = d|−1
U (x).

We now show that ϕ is a groupoid homeomorphism. Toward showing ϕ
is injective, suppose ϕ([U, x]) = ϕ(V, y). Then d|−1

U (x) = d|−1
V (y). Let this

common value be denoted z. Then z ∈ U ∩ V and d(z) = x = y. We use
(BW2) to find some

W ⊆ U ∩ V ⊆ S

containing z. We can describe W in terms of the natural partial order on S
given by set inclusion. In this sense, W = UW ∗W and W = VW ∗W , since
W is contained in U ∩ V . By definition of germ equivalence, this means
[U, x] = [V, y].

Surjectivity follows from (BW1): if γ ∈ G, then there exists U ∈ S such
that γ ∈ U . Taking [U, d(γ)] ∈ S ⋉ G(0), we have ϕ([U, d(γ)] = γ as desired.
Hence, ϕ is a bijection.

Now, we show that ϕ is a homeomorphism - we begin by showing that ϕ is
continuous. Notice that ϕ is a restriction of the source mapping to an open
bisection, which is an open map on its domain. Hence, ϕ is continuous.
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To see that ϕ−1 is continuous, let U be open in G and take x ∈ U . Then
ϕ−1(x) = [U, d(x)], and so ϕ−1(U) = ΘU . Furthermore, d(ΘU) = d(U) - that
is, the composition d|ΘU

◦ ϕ−1 maps U to d(U), so is nothing more than the
source mapping, which is continuous. But ΘU is a bisection, and so d|ΘU

is
continuous, requiring ϕ−1 to be continuous. Thus, ϕ is a homeomorphism.

It remains to prove that ϕ is a groupoid homomorphism. So, let ([U, x], [V, y]) ∈
(S ⋉ G(0))(2), and consider ϕ([U, x][V, y]) = ϕ([UV, y]. Then, there is some
unique element γUV ∈ UV such that s(γUV ) = y. Write γUV = γUγV for
some γU ∈ U and γV ∈ V . Notice that s(γV ) = s(γUγV ) = y, and so
ϕ([V, y]) = γV . Further, s(γU) = r(γV ) = x, and so ϕ([U, x]) = γU . There-
fore,

ϕ([U, x][V, y]) = γUV = γUγV = ϕ([U, x])ϕ([V, y]).

Next, consider ϕ([U, x]−1) = ϕ([U−1, θU(x)]). Let γU be the unique element
of U such that s(γU) = x. Then, θU(x) = r(γu), and so

ϕ([U−1, r(γu)]) = d−1|U−1(r(γU)).

Since γU ∈ U , we have γ−1
U ∈ U−1 with d(γ−1

u ) = r(γu). That is,

ϕ([U−1, r(γU)]) = γ−1
U = ϕ([U, x])−1.

We have shown that ϕ preserves products and inverses, so is a groupoid
homomorphism. Furthermore, ϕ is a bijective homeomorphism, so there-
fore a groupoid homeomorphism.

Conversely, suppose that ϕ is an isomorphism between (S ⋉ G(0)) and G.
We prove that S ⊆ Bis(G) is bisection wide. Let γ ∈ G. Then, since ϕ is an
isomorphism and in particular is surjective, there exists [U, x] ∈ S ⋉ G(0)

such that ϕ([U, x]) = γ. This implies γ ∈ U , and so (BW1) holds.

Now, suppose γ ∈ G such that γ ∈ U ∩ V where U, V ∈ S. We find
some W ∈ S with γ ∈ W ⊆ U ∩ V . Since γ ∈ U ∩ V , there is some
[U, x], [V, y] ∈ G(0) × S such that ϕ([U, x]) = ϕ([V, y]) = γ. But ϕ is injective,
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and so [U, x] = [V, y]. This means x = y, and there exists E ∈ E(S) such
that x ∈ E and UE = V E. Define W = UE = V E. Then W ⊆ U ∩ V , and
γ ∈ W , being of the form γ = γd(γ), where γ ∈ U and d(γ) = x ∈ E. Thus,
W is our required set to satisfy (BW2), and so S is bisection wide.
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Chapter 4

Ample Groupoids Associated to
Inverse Semigroups

We have studied the action of inverse semigroups on secondary spaces,
and so it is natural to ask if there exists any action intrinsic to the in-
verse semigroup, without the need to introduce additional data. In this
chapter, we investigate two such constructions. The first is the universal
groupoid Gu(S) of an inverse semigroup, the research of which was initi-
ated by Paterson [Pat99], and as a result is often known by the name of
Paterson’s groupoid. The universal groupoid is built upon the spectrum
Ê(S) of S, which is the collection of all non-zero semigroup homomor-
phisms (often called semicharacters) from E(S) to the two-element semi-
group {0, 1}. One can view {0, 1} as other structures, such as monoids
or Boolean algebras, and by putting correspondingly stricter conditions
on the homomorphisms, we acquire interesting subgroupoids. We then
investigate an alternate construction of the spectrum, in which it is com-
prised of filters, and show that the filter and semicharacter approaches are
equivalent. Since Paterson’s initial exposition on this groupoid, it has at-
tracted attention from many others - we direct the reader to [KM21, EP16,
Law20, MR10] for further reading.

47
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The second construction is what we call the groupoid of ultragerms of an
inverse semigroup, following [ACaH+22], where it is constructed on the
Stone space of E(S), which consists of all non-trivial ultrafilters on the
idempotent set. The groupoid of ultragerms also naturally arises in the
case that S is a Boolean inverse semigroup, in which case we can identify
ultrafilters on E(S) with non-zero Boolean homomorphisms from E(S) to
the generalized Boolean algebra {0, 1}. Literature regarding the groupoid
of ultragerms is less standardized, but some further details can be found
in [Ste23, Ste10].

Our discussion of groupoids that can arise from inverse semigroups via in-
trinsic actions is by no means exhaustive - for instance, Exel’s tight groupoid
[Exe08] is constructed in a similar way from tight characters, which coin-
cide with the topological closure of the set of non-zero Boolean homomor-
phisms in Ê(S). Note that Exel’s notion of “ultracharacter”, as well as that
which we touch on later, is equivalent to our notion of Boolean homomor-
phism. Substantial effort has also been put into describing groupoids of
filters, the elements of which are filters on the entire inverse semigroup as
a partially ordered set. We direct the reader towards [ACaH+22, LMS13,
LL13].

The aim of the later sections of this chapter is to establish a generalization
of the bisection wide condition we introduced in the previous chapter. In
[BM23], the term “wide” is used in the context of the inverse semigroup
of open bisections of an étale groupoid to describe the conditions under
which a sub-semigroup of open bisections is big enough to recover the
original groupoid via its action on the unit space. A natural question to
ask is whether there is a corresponding notion of bisection wide for gen-
eral inverse semigroups, such that one might call a sub-semigroup W of
S wide if the restriction of some intrinsic action of S to W yields the same
groupoid of germs as that of S. In this chapter, we establish such condi-
tions for both the universal groupoid, and the groupoid of ultragerms.
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4.1 Filters and Characters

4.1.1 Preliminaries

Throughout, we writeX ⊆fin Y to mean thatX is a finite subset of Y . IfX is
a topological space, and U is an open subset of X , then we write U ⊆◦ X .
Given a partially ordered set E, for any F ⊆ E, the set

F ↑ := {t ∈ E : ∃e ∈ F (t ≥ e)}

is called the upward-closure of F . If F = F ↑ - that is, if F is equal to its
upward-closure - then we say F is upward-closed. In the case that F is a
singleton, say F = {e} for some e ∈ E, then F is called the principal upward-
closed set generated by e, and we write e↑. An analogue of this holds for
downward-closed sets. An upward-directed set (respectively, a downward-
directed set) is a subset X ⊆ E such that if s, t ∈ X then there exists u ∈ X

satisfying u ≥ s, t (respectively, u ≤ s, t).

Let E be a meet semilattice. A semicharacter of E is a non-zero semigroup
homomorphism φ : E → {0, 1}. We note that if E has a 0, then there is
no obligation for a semicharacter φ to satisfy φ(0) = 0. A character of E
is a non-zero monoid homomorphism φ : E → {0, 1}. That is, charac-
ters must preserve the 0, if E contains one. Lastly, if E is a generalized
Boolean algebra, a Boolean character is a non-zero Boolean homomorphism
E → {0, 1}, where {0, 1} is taken as the 2-element Boolean algebra. In
particular, Boolean characters must preserve joins, meets, relative comple-
ments and the 0 element. We denote the collection of semicharacters on E
by Ê, the collection of characters on E by Ê0, and the collection of Boolean
characters by Spec(E).

Remark 4.1.1. It is at first unclear whether semicharacters or characters are
the “correct” collections to consider. In Paterson’s original monograph
[Pat99], he restricts his attention to semicharacters. When these collections
form the unit spaces of groupoids, the difference between the two spaces
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amounts to a single isolated point with isotropy. We restrict our focus
generally to Ê(S), as it is the larger space, and because it connects in a
natural manner to C∗-algebras of groupoids.

It is often convenient to describe characters and the structure of semilat-
tices through the lens of filters. The following details can be found in any
reasonable reference to universal algebra or lattice theory, such as [BBS84].
If P is a partially ordered set, then a filter on P is a subset F ⊆ P such that

(F1) F is non-empty.

(F2) F is upward-closed.

(F3) F is downward directed.

A principal filter on E is a filter of the form e↑ for some e ∈ E. A proper
filter is a filter which is properly contained in E. Moreover, ultrafilters are
maximal proper filters, in that they are contained in no other proper filter.
We denote by L(E), F(E), FP (E), and U(E), the collection of all filters,
proper filters, principal filters and ultrafilters on E, respectively.

Collection Notation

Filters L(E)
Proper Filters F(E)

Principal Filters FP (E)

Ultrafilters U(E)

4.1.2 Correspondence Between Filters and Characters

The following relationships between filters and characters are established
(see, for instance, [Ste10]), but we provide details.

Lemma 4.1.2. Let E be a meet semilattice, and take φ ∈ Ê. Then φ−1(1) is a
filter on E. Conversely, if F is a filter, then the characteristic function χF of F is
a semicharacter on E.
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Proof. Let φ ∈ Ê, and define F := φ−1(1). Since φ is non-zero, F is non-
empty, and satisfies (F1). Take s ∈ F such that φ(s) = 1. Then, for every
t ∈ E such that t ≥ s, we have φ(t) = φ(s)φ(t) = φ(st) = φ(s), since s = st.
Hence, φ(t) = 1. This implies t ∈ F , and so F is upward-closed. Lastly, if
s, t ∈ F , then φ(s) = φ(t) = 1, and so φ(st) = φ(s)φ(t) = 1. That is, st ∈ F ,
and st ≤ s, t, giving us that F is downward directed.

Conversely, let F be a filter on E, and take e, f ∈ E. We consider a number
of cases. If e, f ∈ F then by (F3) there exists x ∈ F such that x ≤ e, f .
But ef is the infimum of e and f , so ef ≥ x, and so by (F2), ef ∈ F .
Hence, χF (ef) = χF (e)χF (f) = 1. Next, if e, f /∈ F then ef /∈ F - if it
were, then since e, f ≥ ef , (F2) would give e, f ∈ F . Thus, χF (ef) =

χF (e)χF (f) = 0. Lastly, without loss of generality, suppose e ∈ F and
f /∈ F . Then, following the same argument as before, we have ef /∈ F ,
and so χF (ef) = χF (e)χF (f) = 0. Thus, we have shown χF is a semigroup
homomorphism.

Throughout, for any filter F ⊆ E(S), we denote by φF the semicharacter
φF := χF . In this way, we may switch between using semicharacters and
filters without ambiguity. In many situations, using one over the other is
more natural. We now show an analogous result holds for proper filters
and characters.

Corollary 4.1.3. Let E be a meet semilattice, and take φ ∈ Ê0. Then φ−1(1)

is a proper filter on E. Conversely, if F is a proper filter, then χF is a
character on E.

Proof. Let φ ∈ Ê0, and define F := φ−1(1). The fact that F is a non-empty
filter follows from the previous proof. Notice that φ(0) = 0, since φ is a
monoid homomorphism, and therefore 0-preserving. Thus, 0 /∈ F , and so
F is proper.

Conversely, let F be a proper filter on E. It follows from an identical argu-
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ment as in Lemma 4.1.2 that φ := χF is a semicharacter, and so it remains
to show it is 0-preserving. Since F is proper, we have χF (x) = 0 for some
x ∈ E. It follows from (F2) that we must also have χF (y) = 0 for all y ≤ x.
In particular, χF (0) = 0, since 0 ≤ y for all y ∈ E. Hence, φ(0) = 0.

As above, if φ is a character on E(S) then we write Fφ to denote the proper
filter Fφ := φ−1(1). Lastly, we have a correspondence between ultrafilters
and Boolean homomorphisms, which we state below. We direct the reader
to [Ste10, Proposition 2.7(2)] for details.

Proposition 4.1.4. [Ste10, Proposition 2.7(2)] Let S be a Boolean inverse
semigroup, and take a map φ : E(S) → {0, 1}. Then φ is a morphism of
generalized Boolean algebras if and only if φ−1(1) is an ultrafilter on E(S).

If U ⊆ E(S) is an ultrafilter corresponding to a Boolean character φ, we
write U = Uφ and φ = φU . Lastly, if e↑ is a principal filter on E, then
φ↑
e := χF is called a principal semicharacter.

Next we show that filters are preserved under semilattice isomorphisms.

Remark 4.1.5. In the following proof, we use the fact that a semilattice ho-
momorphism is neceesarily a monotone map, and therefore a semilattice
isomorphism is necessarily an order isomorphism.

Lemma 4.1.6. Let X, Y be semilattices, and f : X → Y a semilattice isomor-
phism. If F ⊆ X is a filter, then f(F ) is a filter on Y . If F ⊆ F ′ are filters on X ,
then f(F ) ⊆ f(F ′), and this inclusion is strict.

Proof. Since F is a filter, it is non-empty, and therefore f(F ) is also non-
empty. Suppose x ∈ f(F ) and y ≥ x. Since f is surjective, there exists
some w ∈ X such that f(w) = y. Then f(w) ≥ x and so w ≥ f−1(x),
but f−1(x) ∈ F and so w ∈ F . Hence, f(w) = y ∈ f(F ), and so f(F )

is upward-closed. Now, suppose x, y ∈ f(F ) - we find some z ∈ f(F )

such that z ≤ x, y. We have that f−1(x), f−1(y) ∈ F , and since F is a filter,
there exists z ∈ F such that z ≤ f−1(x), f−1(y). Then f(z) ∈ F , and since
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f is order-preserving, we have f(z) ≤ x, y, and thus f(F ) is downward-
directed.

If e ∈ f(F ) then since f is an isomorphism, there exists y ∈ X such that
f(y) = e. That is, f(y) ∈ F (F ), giving y ∈ F . Since F ⊆ F ′, we have y ∈ F ′,
and so e = f(y) ∈ f(F ′). That is, f(F ) ⊆ f(F ′). It is straightforward to
show that this holds when the inclusion is strict.

4.2 The Universal Groupoid

Similarly to how we constructed a groupoid of germs when studying the
action of an inverse semigroup on a locally compact Hausdorff space, we
construct the groupoid of germs of the action of an inverse semigroup S
on its spectrum Ê(S). This is the universal groupoid of S, and is denoted
Gu(S), although it is often referred to as Paterson’s groupoid, in lieu of its
first introduction by Paterson [Pat99]. We begin with some motivation,
by discussing Paterson’s approach to the universal groupoid via the class
of S-groupoids. Later, we will see exactly what the “universal” property
of the universal groupoid is.

4.2.1 S-Groupoids

The following approach to the universal groupoid of an inverse semigroup
is that of Paterson [Pat99]. Recall that a topological groupoid is ample
if it admits a basis of compact, open bisections. In particular, all ample
groupoids are étale.

Let G be an ample groupoid, and let S be an arbitrary inverse semigroup
with an inverse semigroup homomorphismψ : S → Bisc(G), where Bisc(G)
denotes the set of compact, open bisections on G. Since G is ample, the col-
lection Bisc(G) forms a basis for G.

We say that G is an S-groupoid if the following conditions hold.
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(i)
⋃

s∈S ψ(s) = G.

(ii) The collection of sets {Ue;f1,...,fn}e,f1,...,fn∈E(S) given by

Ue;f1,...,fn := ψ(e) ∩ ψ(f1)c ∩ . . . ∩ ψ(fn)c

is a basis for the topology on G(0).

The second condition defines what is often called the patch topology, which
we will later generalize to arbitrary étale groupoids.

If G is an S-groupoid, with associated homomorphism ψ : S → Bisc(G),
then we denote this pair as (G, ψ). In the following sections, we construct
the universal groupoid Gu(S) of an inverse semigroup S which, as indi-
cated by its name, is universal among all S-groupoids, in a sense that we
will formalize in a later section.

4.2.2 The Topologies on Ê(S)

For an inverse semigroup S, there is a choice to be made regarding the
topology with which to endow the semicharacter space Ê(S). Note that
we can express Ê(S) as

Ê(S) ⊆ {0, 1}E(S) =
∏

e∈E(S)

{0, 1}.

Remark 4.2.1. Recall that {0, 1}E(S) denotes the collection of functions from
E(S) → {0, 1}. We can identify this with

∏
e∈E(S){0, 1}. Let δe be the se-

quence with a 1 in the position corresponding to e, and a 0 elsewhere. An
arbitrary element of

∏
e∈E(S) may be written as∑

e∈F⊆E(S)

δe,

by which we denote the pointwise sum of sequences. We can then identify
a semicharacter φ : E(S) → {0, 1} with the sequence∑

e∈φ−1(1)

δe.
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Some authors give the spectrum the relative topology inherited from the
product space {0, 1}E(S) (see [Exe08, Ste10]), while others use the topol-
ogy generated by the collection of open sets De := {φ ∈ Ê(S) : e ∈
E(S), φ(e) = 1} [BEM12]. This is equivalent to letting De := {F ∈
L(E(S)) : e ∈ F}. Unless otherwise specified, we will always work with
the former “inherited product” topology. One notable difference of these
topologies is that the spectrum equipped with the product topology is gen-
erally Hausdorff, whereas with topology generated by the sets De, it is al-
most never Hausdorff. In fact, it is only Hausdorff in the case that E(S)
has a single idempotent 1, in which case Ê(S) = {{1}}, and so is trivially
Hausdorff [BEM12, p. 5].

Henceforth, we denote the collection of sets {De : e ∈ E(S)} by D(E(S)),
and the finer patch topology collection {Ue;X : e ∈ E(S), X ⊆fin E(S)} by
Patch(E(S)).

Remark 4.2.2. Recall that if X is a topological space, and I a directed set,
then a net is a function ϕ : I → X . A function f : X → Y is continuous if
and only if for every net (xi)i∈I that converges to x in X , the net f((xi)i∈I)
converges to f(x) in Y . We use this fact without further justification - see
[Wil04, Theorem 11.8] for more details.

Moreover, we often speak of the inherited product topology on Ê(S) being
that of pointwise convergence. If

∏
iXi is a product space, then a net (xi) ⊆∏

iXi converges to x ∈
∏

iXi if and only if each of its projections pj(xi)
converge in the space Xj to pj(x) (see, for instance, [Mun03, Theorem
19.6]).

The following result is briefly mentioned by Exel in [Exe08, p. 40], but we
provide a proof.

Lemma 4.2.3. Let S be an inverse semigroup, and let Ê(S) be given the inherited
product topology. Then, for each idempotent e, the set De is clopen and compact.
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Proof. Notice that the topology here is identical to the topology of point-
wise convergence, since {0, 1} is discrete. We claim that, for a fixed idem-
potent e, the evaluation map εe : Ê(S) → {0, 1} given by φ 7→ φ(e) is
continuous. To see this, let I be a directed set, and consider a net of char-
acters (φi)i∈I . Suppose φi → φ, for some φ ∈ Ê(S). Considering the net
(ϵe(φi))i∈I , we have

ϵe(φi) = φi(e),

which must converge to φ(e), since the topology on Ê(S) is that of point-
wise convergence. Hence, εe is continuous, and since {0, 1} is discrete,
both ε−1

e (1) and ε−1
e (0) are clopen. Hence, De = ε−1

e (1) is clopen. Lastly,
Tychonoff’s theorem asserts that {0, 1}E is compact, and so De is compact
as a closed subset of {0, 1}E .

Lemma 4.2.4. Let S be an inverse semigroup. Then the space of characters Ê0(S)
is clopen in Ê(S).

Proof. Notice that we can write Ê0(S) = Ê(S)\{φ0}, where φ0 is the trivial
filter on E(S). But D0 = {φ0}, and so {φ0} is clopen, by the previous
lemma. Hence Ê0(S) is itself clopen, being the complement of a clopen
set.

Under the assumption that E(S) is finite, the semicharacter space Ê(S) is
discrete with respect to the topology inherited from {0, 1}E(S) - this follows
from the fact that a finite product of discrete spaces is discrete.

Remark 4.2.5. As shown by [Ste10, Proposition 2.5], the condition of finite-
ness on E here is too strong. We can afford simply to require all principal
downward-closed sets be finite.

In general, the collection D(E(S)) does not form a basis for the inherited
product topology on Ê(S). In the previous section, we introduced the
patch topology Patch(E(S)), which consists of sets of the form

Ue;X = Ue;f1,...,fn := De ∩Dc
f1
∩ . . . ∩Dc

fn
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for idempotents e ∈ E(S) and f1, . . . , fn ∈ X ⊆fin E(S). That is, φ ∈
Ue;f,f1,...,fn if and only if φ(e) = 1 and φ(f1) = . . . = φ(fn) = 0. In [Pat99, p.
174], Paterson shows that Patch(E(S)) forms a basis for the product topol-
ogy - we refer the reader to the discussion following [Pat99, Definition
4.3.1] for the details. Further discussion of the patch topology, can also be
found in [ACaH+22, Section 2.3].

Lemma 4.2.6. Let S be an inverse semigroup, and let e ∈ E(S) and X ⊆fin S.
Then there exists a set X ′ such that x ≤ e for all x ∈ X ′, and Ue;X = Ue;X′ .

Proof. Let φ ∈ Ue;X . We may assume that φ preserves 0 - if not, then φ(0) =
1, and so φ(e) = 1 for all e ∈ E(S), since e ≥ 0 by definition of 0. In this
case, X = ∅, and so we set X ′ = ∅.

Assume φ ∈ Ê0(S). We obtain X ′ by considering two cases. Let x ∈ X .

If x ⊥ e, we can omit x, since if φ ∈ De then φ(x) = φ(e)φ(x) = φ(ex) =

φ(0) = 0, as we assumed that φ is non-trivial. That is, De ⊆ Dc
x, and thus

De ∩Dc
x = De.

If x ⋒ e, then xe ̸= 0. Then, for φ ∈ De, we have φ(xe) = φ(x)φ(e) = φ(x)

and so we add xe to X ′. In particular, we have Dex ⊆ Dx. Note that the
cases where x ≥ e or x ≤ e are just instances of having x ⋒ e - in that case,
we have xe = e and xe = x, respectively.

Now, X ′ is a finite subset of S such that x ≤ e for all x ∈ X ′, and Ue;X =

Ue;X′ .

Recall that each set De is clopen and compact. In the following lemma, we
show that each set Ue;X ∈ Patch(E(S)) is also clopen and compact.

Lemma 4.2.7. Let S be an inverse semigroup, and let Ue;X ∈ Patch(E(S)).
Then Ue;X is clopen and compact.
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Proof. The set Ue;X is defined as

De ∩
⋂
x∈X

Dc
x.

Each Di is clopen and compact, and so each Dc
i is clopen. Hence, Ue;X

is a finite intersection of open sets, and so is open. Furthermore, it is an
intersection of closed sets, and so is closed [Mun03, Theorem 17.1]. Lastly,
Ue;X ⊆ De, and De is compact, and so Ue;X is a closed subset of a compact
set and is hence compact [Mun03, Theorem 26.2].

4.2.3 The Spectrum Action

For an inverse semigroup S , we define a natural action of S on Ê(S). For
s ∈ S, recall that we have

Ds∗s = {φ ∈ Ê(S) : φ(s∗s) = 1}.

Taking φ ∈ Ds∗s, define θs(φ) : E(S) → {0, 1} by

θs(φ)(e) = φ(s∗es). (4.1)

We check below that θs(φ) is a non-zero semicharacter on E(S) and is in
Dss∗ . Furthermore, we claim that this defines a semigroup action on Ê(S).

Lemma 4.2.8. Let S be an inverse semigroup, and let s ∈ S and φ ∈ Ds∗s. Then
θs(φ) is a non-zero semicharacter on E(S) and is in Dss∗ . Furthermore, θ is a
semigroup action on Ê(S).

Proof. First, we verify that θs(φ) is a non-zero semicharacter. Since φ ∈
Ds∗s, we know φ(s∗s) = 1. Then,

θs(φ)(ss
∗) = φ(s∗ss∗s) = φ(s∗s) = 1.

Thus, θs(φ) is non-zero. Now, if e, f ∈ E(S), we have

θs(φ)(ef) = φ(s∗efs) = φ(s∗ss∗efs) = φ(s∗ess∗fs)

= φ(s∗es)φ(s∗fs) = θs(φ)(e)θs(φ)(f).
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Hence, θs(φ) is multiplicative, and so is a non-zero semicharacter. More-
over, as shown above, we have θs(φ)(ss∗) = 1. Hence, θs(φ) ∈ Dss∗ .

To show that θs is bijective, it suffices to show it has a well-defined inverse
- we claim that such an inverse is given by θs∗ . Indeed, if φ ∈ Dss∗ , then
since φ(ss∗) = 1, we use the fact that φ is multiplicative to see that

(θs∗ ◦ θs)(φ)(e) = θs∗(φ(s
∗es)) = φ(ss∗ess∗) = φ(ss∗)φ(e)φ(ss∗) = φ(e),

and so θs∗ ◦ θs is the identity on Dss∗ . Similarly, for φ ∈ Ds∗s,

(θs ◦ θs∗)(φ)(e) = θs(φ(ses
∗)) = φ(s∗ses∗s) = φ(s∗s)φ(e)φ(s∗s) = φ(e),

and so θs ◦ θs∗ is the identity on Ds∗s. Hence, we have θ−1
s = θs∗ .

To see that θs is a homeomorphism, we lastly check that it is continuous
and has continuous inverse. Let s ∈ S, and for φ ∈ Ê(S), let I be a directed
set and let (φi)i∈I be a net of semicharacters in Ê(S) such that φi → φ. For
any e ∈ E(S), we have θs(φi)(e) = φi(s

∗es) and so φi(s
∗es) → φ(s∗es) =

θs(φ)(e). Hence, θs(φi) → θs(φ) and so to θs.

To see that θ−1
s is continuous, recall that θ−1

s = θs∗ , and note that the above
argument holds for all s ∈ S - in particular, for s∗. Hence, θ−1

s is a contin-
uous inverse to θs. Along with the fact that θs is a homomorphism, this
shows that θs is a homeomorphism from Ds∗s to Dss∗ .

Lastly, it remains to show that θ satisfies Definition 3.2.1. We have already
shown that θs is continuous for each s ∈ S . That De is open is given by
Lemma 4.2.3, and so we have that (A1) holds. If φ ∈ Ê(S), then φ is non-
zero so there exists an idempotent e such that φ(e) = 1. Then φ ∈ De, and
so the domains of the action cover Ê(S) as desired, giving us (A2).

One can also consider the restriction of the action of S on Ê(S) to the space
of characters, Ê0(S), and the space of Boolean characters, Ê∞(S). The rela-
tionship between these groupoids, as well as groupoids of filters, is thor-
oughly studied in [ACaH+22]. We refer to the groupoid of germs of these
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restricted actions as the contracted universal groupoid G0(S) (as in [SS21])
1, and the groupoid of ultragerms G∞(S), respectively. The groupoid of ul-
tragerms embeds as a subgroupoid of the contracted universal groupoid
of S, which in turn embeds as a subgroupoid of the universal groupoid
Gu(S). As shown in our initial discussion of the groupoid of germs of an
action, each of these groupoids is étale, and henceforth we tacitly identify
their respective unit spaces with their corresponding character spaces via
the map [e, φ] 7→ φ for any e with φ ∈ De. The following diagram summa-
rizes the inclusions of the character spaces and their respective groupoids.

U(E(S)) ∼= Ê∞(S) F(E(S)) ∼= Ê0(S) L(E(S)) ∼= Ê(S)

G∞(S) G0(S) Gu(S)

Figure 4.1: Inclusions of character spaces and their respective groupoids.

We have seen that Patch(E(S)) forms a basis for Ê(S), and consists of
clopen compact sets. It follows from this that Gu(S) has a basis consisting
of clopen compact sets - we refer the reader to the result below for the
details.

Proposition 4.2.9. [Pat99, Theorem 4.3.1] Let S be an inverse semigroup.
Then Gu(S) is an ample groupoid.

4.2.4 The Finite Case

Given an inverse semigroup S , the assumption that S has only finitely
many idempotents greatly simplifies the topology of the spectrum and the
universal groupoid. While our interest lies mainly in the infinite case, we
will briefly cover some interesting properties that arise in the finite case.

1This groupoid is sometimes called the groupoid of proper germs.
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Let E be a semilattice. We say that e ∈ E is primitive if, for all f ∈ E such
that f ≤ e and f ̸= 0, we have f = e. For example, if E is the semilattice of
non-empty subsets of a set X , then the primitive elements of E are exactly
the singletons of X .

Lemma 4.2.10. If E is a finite semilattice, then the collection of filters coincides
with that of principal filters. That is, L(E) = FP (E).

Proof. Let F be a filter on E. If F = E, then F = 0↑, so we assume that F
is proper. Since E is finite, F is certainly also finite - let F = {e1, . . . , en}
where n <∞. Since E admits all finite meets, we have

f :=
∧

1≤i≤n

ei ∈ E.

We claim that F = f ↑. If e ∈ F , then e = ei for some 1 ≤ i ≤ n. In this case,
f = e1, . . . , ei−1eei+1 . . . en, and so f ≤ e, and e ∈ f ↑.

Conversely, if e ∈ f ↑, then e ≥ f . If e = f , then clearly e ∈ F , since
F admits finite meets. Otherwise, if e > f , then since f is an infimum,
e cannot be a lower bound of F . That is, there must exist ei ∈ F such
that e ≥ ei. But filters are upward-closed, and so e ∈ F . This shows that
L(E) ⊆ FP (E). The reverse inclusion is trivial.

It follows that if E is a finite semlattice, then the ultrafilters on E are pre-
cisely those of the form p↑, where p is primitive, as we show now.

Lemma 4.2.11. Let E be a finite semilattice. Then

U(E) = Fprim
P := {e↑ ∈ FP (E) : e is primitive}.

Proof. Since E is finite, by Lemma 4.2.10, we can assume that every ul-
trafilter is principal, since U(E) ⊆ L(E). Let e↑ ∈ U(E) be an ultrafilter,
but toward a contradiction, assume e is not primitive. That is, there ex-
ists some non-zero f ∈ E such that f < e. But then f ↑ is a proper filter
containing e↑, since if x ≥ e we have x ≥ f . Hence, e must be primitive.
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Conversely, suppose e is primitive but e↑ is not an ultrafilter. Then, there
exists a proper filter F ⊃ e↑. By Lemma 4.2.10, we can assume F = f ↑ for
some f ∈ E. Thus, we have f ≤ e, and since f ↑ is a proper filter, we have
f ̸= 0. Furthermore, f ↑ properly contains e↑, and so f ̸= e. Hence, e cannot
be primitive, and so e↑ must be an ultrafilter.

Example 4.2.12. Consider the set A = {a, b, c}, and the collection I(A)
of partial bijections from A to itself. Then E(I(A)) is the set of partial
identity functions on A, which we may identify with the powerset of A.
The idempotents of I(A) form a semilattice, with the partial order being
set containment and the meet operation given by set intersection.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Figure 4.2: A representation of E(I(A)) as a lattice.

The spectrum ̂E(I(A)) of this semilattice is the collection of non-zero semi-
group homomorphismsE(I(A)) → {0, 1}. By Lemma 4.2.10 we know that
̂E(I(A)) is consists exactly of the principal filters on I(A). One example of

an element of ̂E(I(A)) is seen below. Note that this is an ultrafilter, since c
is primitive.
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{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅ 7→ 0

Figure 4.3: A representation of the principal filter c↑, depicted in red.

Consider the partial bijection f : {b, c} → {a, b} defined by b 7→ a and
c 7→ b. Then the filter c↑ shown above is in Df∗f since {b, c} ≥ {c}. We
can then compute the action of f on c↑, which turns out to be the principal
filter b↑.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅ 7→ 0

Figure 4.4: A representation of the filter θf (c↑) = b↑, depicted in red.

Notice that θf (φ) ∈ Dff∗ since θf (φ)({a, b}) = 1, and also θf (φ)({b, c}) = 1

so θf (φ) ∈ Df∗f .

Lemma 4.2.13. Let S be an inverse semigroup. If E(S) is finite, then Gu(S) is
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discrete.

Proof. We begin by showing that Ê(S) = Gu(S)(0) is discrete. Recall that
the topology on Ê(S) is the relative topology inherited from the product
topology on {0, 1}E(S), where {0, 1} has the discrete topology. Since E(S)
is finite, {0, 1}E(S) is a finite product of discrete spaces and so is discrete.
Then, Ê(S) is discrete as a subspace of a discrete space. Since Gu(S) is an
étale groupoid, for each φ ∈ Ê(S) we have that Gu(S)φ is discrete. Further-
more,

Gu(S) =
⋃

φ∈Ê(S)

Gu(S)φ

is a finite union of discrete spaces, and so is discrete.

It follows that Gu(S) is trivially Hausdorff.

Every inverse semigroup has another, more basic, intrinsic groupoid, called
the underlying groupoid of S. We will denote this by GS . The unit space of
GS is E(S), and the range and source maps are given by d(s) = s∗s and
r(s) = ss∗. In this case, s and t are composable if and only if s∗s = tt∗.

The following result, briefly mentioned in [Ste10] but to which we provide
details, asserts that the universal groupoid and underlying groupoid of a
finite inverse semigroup coincide, up to isomorphism.

Proposition 4.2.14. [Ste10, Example 5.9] Let S be an inverse semigroup
such that E(S) is finite. Define a map Θ by

Θ : GS → Gu(S), s 7→ [s, φ↑
s∗s].

Then Θ is an isomorphism of groupoids.

Proof. First, we check that Θ is surjective. Since E(S) is finite, Lemma
4.2.10 states that every character on E(S) is principal, and so is of the form
φ↑
s∗s for some s ∈ S. Let [t, φ↑

s∗s] ∈ Gu(S). We claim that Θ(ts∗s) = [t, φ↑
s∗s].
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First, notice that φ↑
s∗s ∈ Dt∗t which implies t∗t ≥ s∗s, and so s∗s = s∗st∗t.

This gives us

(ts∗s)∗(ts∗s) = s∗st∗ts∗s

= s∗ss∗s

= s∗s.

Hence, φ↑
s∗s = φ↑

(ts∗s)∗(ts∗s)
. Furthermore, using the above equality, we have

t(ts∗s)∗(ts∗s) = ts∗s,

and moreover,
(ts∗s)(ts∗s)∗(ts∗s) = (ts∗s).

Letting e = (ts∗s), we have that φ↑
s∗s ∈ De and (ts∗s)e = te, therefore

[ts∗s, φ↑
(ts∗s)∗(ts∗s)

] = [t, φ↑
s∗s]. In particular, Θ(ts∗s) = [t, φ↑

s∗s] as desired.

To see that Θ is injective, suppose s, t ∈ S such that s ̸= t and Θ(s) =

Θ(t). Then [s, φ↑
s∗s] = [t, φ↑

t∗t], which implies that φ↑
s∗s = φ↑

t∗t. That is, if
e ∈ E, then e ≥ t∗t if and only if e ≥ s∗s. In particular, s∗s ∈ E(S)
and s∗s ≥ s∗s, so we have s∗s ≥ t∗t. Similarly, t∗t ≥ s∗s, so therefore
s∗s = t∗t. Furthermore, by germ equivalence, we know that there exists an
idempotent u such that u ≥ s∗s = t∗t and su = tu. Since u ≥ s∗s = t∗t, we
have s∗su = s∗s and t∗tu = t∗t. Then,

s = ss∗s = ss∗su = su = tu = tt∗tu = tt∗t = t,

and so Θ is bijective

We now check that Θ is a groupoid homomorphism. We begin with com-
posability - suppose that (s, t) ∈ G(2)

S ; that is, tt∗ = s∗s. We claim that
(Θ(s),Θ(t)) ∈ G(2)

u (S). The definition of composable pairs of elements im-
plies that (Θ(s),Θ(t)) = ([s, φ↑

s∗s], [t, φ
↑
t∗t]) is composable only when θt(φ

↑
t∗t) =

φ↑
s∗s. Indeed,

θt(φ
↑
t∗t) = φ↑

tt∗ = φ↑
s∗s.
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This gives us that (Θ(s),Θ(t)) ∈ G(2)
u (S).

Next, we verify that Θ preserves inverses and multiplication. One can see
that

Θ(s∗) = [s∗, φ↑
(s∗s)∗(s∗s)

] = [s∗, φ↑
ss∗ ] = [s, φ↑

s∗s]
∗
,

which is precisely Θ(s)−1. If s, t ∈ GS are composable, recall that tt∗ = s∗s.
Then,

Θ(st) = [st, φ↑
(st)∗(st)

] = [st, φ↑
t∗s∗st] = [st, φ↑

t∗t] = [s, φ↑
s∗s][t, φ

↑
t∗t] = Θ(s)Θ(t).

This means that Θ preserves each groupoid operation, and thus is an iso-
morphism.

Note that this proposition only asserts that Gu(S) and GS are isomorphic as
groupoids, but without a topology on GS , there is no sense in which they
might be homeomorphic. However, one might endow GS with the discrete
topology, and so since Gu(S) is also discrete (see 4.2.13), the universal and
underlying groupoids are also trivially homeomorphic. Hence, under the
assumption of having finite idempotents, one can reduce to the underlying
groupoid of S, which in many respects is more basic than the universal
groupoid.

Remark 4.2.15. In [Pat99, Proposition 4.4.6], Paterson shows that if E(S)
is not finite, the map Θ is still defined, and in fact its image is a dense
subgroupoid of Gu(S).

4.2.5 Examples of Finite Inverse Semigroup Actions

The following example explicitly constructs the universal groupoid of a
basic, finite, symmetric inverse semigroup.

Example 4.2.16. LetA = {a, b} and consider S = I(A), the set of partial bi-
jections on A. This consists of the following maps, along with the identity
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maps corresponding to the idempotents.

sa,b(a) = b, sa,b(b) = a,

sa(a) = b,

sb(b) = a,

s0(0) = 0.

One can see that Ê(S) consists of 4 characters, asE(S) admits 4 filters, and
it is straightforward to calculate the universal groupoid S.

φ↑
0 φ↑

a φ↑
b

φ↑
{a,b}

[e, φ↑
0]

[sa, φ
↑
a]

[sb, φ
↑
b ]

[sab, φ
↑
{a,b}]

[e, φ↑
{a,b}]

Figure 4.5: Gu(I(S))

As can be seen, the groupoid consists of the group S2 at φ↑
{a,b} and then

the objects φa and φb with one morphism between them. We can then
reduce the universal groupoid to find the contracted universal groupoid
and groupoid of ultragerms, which are seen to be subgroupoids of the
universal groupoid.

φ↑
a φ↑

b
φ↑
{a,b}

[sa, φ
↑
a]

[sb, φ
↑
b ]

[sab, φ
↑
{a,b}]

[e, φ↑
{a,b}]

φ↑
a φ↑

b

[sa, φ
↑
a]

[sb, φ
↑
b ]

Figure 4.6: G0(I(S)) (left) and G∞(I(S)) (right).
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Remark 4.2.17. One might generalize the above by noticing that if In is
the finite symmetric inverse semigroup on n elements, then the universal
groupoid Gu(In) will necessarily contain the symmetric group Sn at the
principal filter φ↑

{1,...,n}, as the bijections on {1, . . . , n} are exactly the per-
mutations on n elements. Then, one has the trivial group at the trivial
filter. Lastly, since partial bijections are between sets of equal cardinal-
ity, the remainder of the groupoid consists of n − 1 subgroupoids, where
the i-th subgroupoid contains the principal filters generated by subsets
of cardinality 1 ≤ i < n. Then, the groupoid of ultragerms with consist of
the subgroupoid containing the primitive principal filters, which are those
generated by singletons.

4.2.6 The Universal Groupoid is Universal

We now briefly show that Gu(S) is indeed universal, in the sense that if G ′

is any S-groupoid, then G ′ can be associated with a closed subgroupoid of
Gu(S), via some well-behaved surjective homomorphism. Furthermore, it
can be shown that Gu(S) is a faithful S-groupoid, such that S → Bisc(Gu(S))
is injective. In this sense, the universal groupoid captures all information
about about the inverse semigroup S.

Let S be an inverse semigroup, and let (G, ϕ), (G ′, ϕ′) be S-groupoids with
associated maps ϕ : S → Bisc(G) and ϕ′ : S → Bisc(G ′). A map f : G → G ′

is said to be S-equivariant if
f ◦ ϕ = ϕ′.

That is, if the follow diagram commutes.

S

G G ′

ϕ ϕ′

f

The following can be found in [Pat99, Proposition 4.3.5], or [MR10, p. 16].
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Recall that if G is a groupoid, and Z ⊆ G(0), then G|Z denotes the reduction
of G by Z, and is given by r−1(Z) ∩ d−1(Z).

Lemma 4.2.18. Let S be an inverse semigroup. Then Gu(S) is an S-groupoid.

Proof. Define ϕ : S → Bisc(Gu(S)) by s 7→ Θ(s,Ds∗s). We know that each
Θ(s,Ds∗s) is an open bisection (see Proposition 3.2.8), and since the domain
map is a homeomorphism on Θ(s,Ds∗s), we have that d(Θ(s,Ds∗s)) = Ds∗s,
which is compact, giving us Θ(s,Ds∗s) ∈ Bisc(Gu(S))).

We check that ϕ is a homomorphism. Recall that we have

D(st)∗(st) = θt∗(Ds∗s ∩Dtt∗).

If [st, φ] ∈ Θ(st,D(st)∗(st)), then there exists ψ ∈ Ds∗s∩Dtt∗ such that θt(ϕ) =
ψ. Then, [st, φ] = [s, ψ][t, φ] ∈ Θ(s,Ds∗s)Θ(t,Dt∗t).

Conversely, if [s, ψ][t, φ] ∈ Θ(s,Ds∗s)Θ(t,Dt∗t), then θt(φ) = ψ, and so ψ ∈
Ds∗s ∩Dtt∗ , giving us

φ ∈ θt∗(Ds∗s ∩Dtt∗) = D(st)∗(st).

Thus, [s, ψ][t, φ] = [st, φ] ∈ Θ(st,D(st)∗(st)), and we have shown equality.

To see ϕ(s∗) = ϕ(s)∗, notice that

ϕ(s∗) = Θ(s∗, Dss∗) = Θ(s,Ds∗s)
∗

as required.

By Proposition 4.2.9, the groupoid Gu(S) is ample, and as shown by Pater-
son ( [Pat99, p. 174]), the collection Patch(E(S)) is a basis for its topology.
We know that the sets Θ(s,Ds∗s) cover Gu(S), since the collection D(E(S))
covers Ê(S), and we have just shown that there exists a semigroup homo-
morphism ϕ : S → Bisc(Gu(S)). Hence, Gu(S) is an S-groupoid.

Proposition 4.2.19. [Pat99, Proposition 4.3.5] Let (G, ϕ) be an S-groupoid.
Then there exists a closed, invariant subsetZ ⊆ Gu(S)(0) such that G(0) ∼= Z.
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Furthermore, there exists a continuous, surjective, S-equivariant homo-
morphism

p : Gu(S)|Z → G

such that p is a retraction onto Z - that is, p|Z = idZ .

The above result demonstrates that every S-groupoid corresponds to a
subgroupoid of Gu(S) in a well-defined manner. Paterson also mentions
the following result (see [Pat99, p. 180]), but omits the proof, so we pro-
vide the details.

Proposition 4.2.20. Let S be an inverse semigroup, and let (Gu(S), ϕ) be
the universal groupoid of S. Then Gu(S) is a faithful S-groupoid - that is,
ϕ is injective.

Proof. Toward a contradiction, suppose there exist s ̸= t ∈ S such that
ϕ(s) = ϕ(t). By definition, this means Θ(s,Ds∗s) = Θ(t,Dt∗t). Hence, for
every φ ∈ Ds∗s, there exists [t, ϕ] ∈ Θ(t,Dt∗t) such that [s, φ] = [t, ϕ]. In
particular, φ = ϕ. This implies that θs(φ) = θt(φ) - this holds for all such
φ, and so θs = θt. But the mapping s 7→ θs is a homomorphism - and so is
injective - giving s = t.

4.2.7 Homeomorphism of Unit Spaces

We now turn our attention back to the following question. Suppose S and
W are inverse semigroups such that W ⊆ S. Under what conditions does
Gu(S) ∼= Gu(W) hold? One would expect that S ∼= W is sufficient - indeed,
we show this is true at the end of this section. We begin by assuming the
existence of an isomorphism between E(S) and E(W). This allows us to
induce a homeomorphism between the respective character spaces of S
and W , with respect to the inherited product topology.

First, we characterize the continuous map between semicharacter spaces
induced by a homomorphism between semilattices. We refer the reader to
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[Rie16, Section 1.3] for some basic facts about functors.

Remark 4.2.21. Recall that if F : C → D is a functor between categories
C and D, we say F is contravariant if it switches directions of morphisms.
That is, whenever f : x → y is a morphism in C, then F (f) : F (y) →
F (x) is a morphism in D [Rie16, Definition 1.3.5]. Below, we take C to be
the category of meet-semilattices with semilattice homomorphisms, and
D to be the category of spaces of non-zero semicharacters with continuous
maps.

Lemma 4.2.22. Let F be the functor from the categories of meet-semilattices to
the category of non-zero semicharacter spaces with the inherited product topology
that takes E to its semicharacter space Ê. Then F is a contravariant functor, and
if ι : E → E ′ is a semilattice homomorphism, then F (ι) : Ê → Ê ′ defined by

F (ι)(φ)(e) = φ(ι(e)) (4.2)

for φ ∈ Ê ′ and e ∈ E is a continuous mapping.

Proof. One can see that, by definition, F is contravariant. We begin by
ensuring that if ι : E → E ′ is a semilattice homomorphism, then F (ι) is a
map from Ê ′ to Ê. In particular, we check that the image of F (ι) consists
of non-zero semicharacters.

Let φ ∈ Ê ′. Since φ is non-zero, there exists an idempotent e ∈ E such that
φ(e) = 1. We know ι is surjective, so there exists f ∈ E ′ such that ι(f) = e.
Then,

F (ι)(φ)(f) = φ(ι(f)) = φ(e) = 1.

Hence, F (ι)(φ) is non-zero. We now check that it is multiplicative. If e, f ∈
E ′, then

F (ι)(φ)(ef) = φ(ι(ef)) = φ(ι(e)ι(f)) = φ(ι(e))φ(ι(f)) = F (ι)(φ)(e)σ(φ)(f).

Next, we check that if ι : E → E ′ is a semilattice isomorphism, then F (ι) :
Ê ′ → Ê is a continuous mapping.
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Let I be a directed set, and (φi)i∈I a net in Ê such that φi → φ for some φ ∈
Ê. Since the topology on the spectrum is that of pointwise convergence
(see Remark 4.2.2), φi → φ if and only if φi(e) → φ(e) for every e ∈ E.
Consider the net

(F (ι)(φi)(e))i∈I

in {0, 1}. This is equal to (φi(ι(e)))i∈I , which converges toφ(ι(e)) = F (ι)(φ).
Thus, we have F (ι)(φi) → F (ι)(φ), and so F (ι) is a continuous map.

We lastly check that F preserves identity morphisms and composition of
morphisms.

First, ifE is a meet-semilattice, and idE is the identity morphism atE, then
we see that

F (idE)(φ)(e) = φ(idE(e)) = φ(e).

Hence, F preserves identity morphisms.

Now, suppose ι1 : E → E ′ and ι2 : E
′ → E ′′ are morphisms. We claim that

F (ι2)F (ι1) = F (ι2ι1). We have

F (ι2)F (ι1)(φ)(e) = F (ι2)(φ)(ι1(e))

= φ(ι2(ι1(e)))

= φ((ι2ι1)e)

= F (ι2ι1)(φ)(e).

Hence, F preserves composition and is thus a functor.

E Ê

E ′ Ê ′

ι

F

F

F (ι)

Remark 4.2.23. By [Rie16, Lemma 1.3.8], we know that functors preserve
isomorphisms. Hence, if ι : E → E ′ is an isomorphism, then so is F (ι) :

Ê ′ → Ê with inverse F (ι−1) : Ê → Ê ′.
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Henceforth, if S and W are inverse semigroups, and ι : E(S) → E(W) is a
map between idempotents, we denote by σ the induced map given above
by F (ι) : Ê(W) → Ê(S).

Proposition 4.2.24. Let S and W be inverse semigroups. If ι : E(W) →
E(S) is a semilattice isomorphism, then σ : Ê(S) → Ê(W) as given in
Equation 4.2 is a homeomorphism.

Proof. By the remark above, we know that if ι : E(W) → E(S) is a semi-
lattice isomorphism, then σ : Ê(S) → Ê(W) is also a continuous isomor-
phism of semicharacter spaces. Hence, it remains to show that σ has a
continuous inverse.

The inverse σ−1 of σ can be defined for φ ∈ Ê(W) and e ∈ E(S) as
σ−1(φ)(e) = φ(ι−1(e)). The function ι−1 is well-defined since ι is an iso-
morphism. We can check that

(σ−1 ◦ σ)(φ)(e) = σ−1(φ(ι(e))) = φ(ι−1(ι(e))) = φ(e).

show that σ−1 is continuous. We use a similar argument as that for σ. Let I
be a directed set and let (φi)i∈I be a net in Ê(W) such that φi → φ for some
φ ∈ Ê(W). This is equivalent to having φi(e) → φ(e) for every e ∈ E(W)

(see 4.2.2). Then,

σ−1(φi)(e) = φi(ι
−1)(e) → φ(ι−1)(e) = σ−1(φ)(e).

Hence σ−1 is continuous, and σ is a homeomorphism.

It may seem a trivial claim that if we begin with isomorphic inverse semi-
groups, that their universal groupoids are homeomorphism. This is en-
tirely unsurprising, but non-trivial to prove.

Proposition 4.2.25. Let S and W be inverse semigroups with W ⊆ S . If
there exists an isomorphism ι : S → W , then the map σ : Gu(S) → Gu(W)

as defined in Equation 4.3 is a groupoid homeomorphism.
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Proof. Suppose there exists an isomorphism ι : S → W . Define σ : Ê(W) →
Ê(S) by

σ(φ)(e) = φ(ι(e))

for all e ∈ E(S). We also define ρ : Gu(S) → Gu(W) by

[s, φ] 7→ [ι(s), σ−1(φ)].

We claim that ρ is a homeomorphism.

First, we check that ρ is well-defined. Suppose [s, φ] = [t, γ], and consider
ρ([s, φ]) = [ι(s), σ−1(φ)] and ρ([t, γ]) = [ι(t), σ−1(γ)]. We have φ = γ, and
so since σ is a homeomorphism, we have σ−1(φ) = σ−1(γ). Furthermore,
we have the existence of an idempotent e ∈ E(S) such that φ ∈ De and
se = te. Notice that

σ−1(φ)(ι(e)) = φ(e) = 1,

and so σ−1(φ) ∈ Dι(e). Furthermore, se = te implies ι(se) = ι(te), but ι
is an isomorphism, so ι(s)ι(e) = ι(t)ι(e). Hence, we have [ι(s), σ−1(φ)] =

[ι(t), σ−1(γ)].

That ρ is surjective is straightforward to check. Since ι is an isomorphism,
we can write a germ of Gu(W) as [ι(s), φ] for some s ∈ S. Then ρ([s, σ(φ)]) =
[ι(s), φ].

To see that ρ is injective, suppose that ρ([s, φ]) = ρ([t, γ]) - that is, [ι(s), σ−1(φ)] =

[ι(t), σ−1(γ)]. As before, this means φ = γ, and we have an idempotent
ι(f) ∈ E(W) such that σ−1(φ) ∈ Dι(f) and ι(s)ι(f) = ι(t)ι(f). Notice that

φ(f) = σ−1(φ)(ι(f)) = 1,

and so φ ∈ Df . Furthermore, this implies ι(sf) = ι(tf), and ι being in-
jective gives sf = tf , where f ∈ E(S). Hence, [s, φ] = [t, γ], and so ρ is
injective.

We have shown that ρ is a bijection, so now we show that it is continuous.
Let Θ(s, U) ⊆ Gu(W) be open, where U ⊆◦ Ds∗s. Then, since ι is a bijection
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and σ is a homeomorphism,

ρ−1(Θ(s, U)) = {[t, φ] ∈ Gu(S) : ι(t) = s, σ−1(φ) ∈ U} = Θ(ι−1(s), σ(U),

which is open in Gu(S).

The inverse of ρ can be given as

ρ−1 : Gu(W) → Gu(S), [s, φ] 7→ [ι−1(s), σ(φ)].

Since ι is an isomorphism and σ is a homeomorphism, we have that ι−1

is also an isomorphism, and σ−1 is also a homeomorphism. Hence, the
continuity of ρ−1 follows from an identical argument as above.

It remains to show that ρ preserves composability and is a groupoid homo-
morphism. Suppose ([s, φ], [t, γ]) ∈ Gu(S)(2). We claim that (ρ([s, φ]), ρ([t, γ])) ∈
Gu(W)(2). We know that θt(γ) = φ. Then,

θι(t)(σ
−1(γ)) = σ−1(γ)(ι(t)∗ι(e)ι(t))

= σ−1(γ)(ι(t∗et))

= σ−1(θt(γ))(e)

= σ−1(φ)(e).

Hence, (ρ([s, φ]), ρ([t, γ])) ∈ Gu(W)(2).

We check that ρ preserves multiplication. If [s, φ], [t, γ] ∈ Gu(S) are com-
posable, then we have

ρ([s, φ][t, γ]) = ρ([st, γ])

= [ι(s)ι(t), σ−1(γ)]

= [ι(s)ι(t), σ−1(γ)]

= [ι(s), σ−1(φ)][ι(t), σ−1(γ)],

since we know that θι(t)(σ−1(γ)) = σ−1(φ). Hence, this is equal to ρ([s, φ])ρ([t, φ]).
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Lastly, let [s, φ] ∈ Gu(S). Then,

ρ([s, φ]−1) = ρ([s∗, θs(φ)])

= [ι(s∗), σ−1(θs(φ))]

= [ι(s)∗, θs(σ
−1(φ))]

= [ι(s), σ−1(φ)]−1

= ρ([s, φ])−1.

So, we have shown that ρ is a groupoid homomorphism, and hence we
have that ρ is a groupoid homeomorphism.

4.2.8 Wideness

Following [Pat99, Definition 2.3.3], we define a pseudogroup on a topolog-
ical space X as an inverse semigroup of homeomorphisms between open
subsets of X , and denote this by Γ(X). We write θx ∈ Γ(X) to say that θx is
a homeomorphism in Γ(X) such that θx : U → V and U, V ⊆ X are open.

If Γ(X),Γ(Y ) are pseudogroups on spaces X and Y respectively, and f :

X → Y is a map, then by abuse of notation we write Γ(Y )f to mean the
collection {θy ◦ f : θy ∈ Γ(Y )}.

Let S be an inverse semigroup with semicharacter space Ê(S). Recall that
the action of S on Ê(S) is given by the homeomorphisms θs : Ds∗s → Dss∗

for s ∈ S . By ΓS(Ê(S)) we denote the pseudogroup on Ê(S) generated by S,
given by the collection {θs : s ∈ S} where each θs is the homeomorphism
between open subsets of Ê(S) as given by Equation 4.1.

Let S,W be inverse semigroups with pseudogroups ΓS(Ê(S)),ΓW(Ê(W))

on their semicharacter spaces. If f : X → Y is a homeomorphism, then we
say that ΓS(Ê(S)) and ΓW(Ê(W)) are conjugate via f if

ΓS(Ê(S)) = f−1ΓW(Ê(W))f.
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In particular, this asserts that whenever s ∈ S , there exists some w ∈ W
such that whenever φ ∈ Ds∗s, we have σ(φ) ∈ Dw∗w and θs(φ) = (f−1 ◦θw ◦
f)(φ).

There may exist numerous elements in W satisfying this condition with
respect to s ∈ S - the collection of these is denoted Ws. That is,

Ws := {w ∈ W : θs = f−1 ◦ θw ◦ f}.

Definition 4.2.26. Let S be an inverse semigroup, and W ⊆ S a sub-
semigroup. We say that W is wide in S (or just wide when there is no
ambiguity) if the following criteria hold.

(W1) There exists an isomorphism ι : E(W) → E(S).

(W2) The pseudogroups ΓS(Ê(S)) and ΓW(Ê(W)) are conjugate via σ -
that is,

ΓS(Ê(S)) = σ−1ΓW(Ê(W))σ.

(W3) Whenever s, t ∈ S and F ∈ F(E(S)), there exists e ∈ F such that
se = te if and only if there exists f ∈ E(W) such that ι(f) ∈ F and
wf = vf for all w ∈ Ws, and v ∈ Wt.

Suppose W is wide in S. We can now define ρ : Gu(S) → Gu(W) by

[s, φ] 7→ [w, σ(φ)] for any w ∈ Ws. (4.3)

In the following lemma, we show that our sets Ws behave nicely with
respect to multiplication and inversion.

Lemma 4.2.27. Let S and W be inverse semigroups such that W ⊆ S . If s, t ∈
S, then we have the following.

(i) WsWt ⊆ Wst.

(ii) Ws∗Ws
∗.
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Proof. Let s, t ∈ S, and take wv ∈ WsWt, such that w ∈ Ws and v ∈ Wt. We
have

σ−1 ◦ θwv ◦ σ = σ−1 ◦ θw ◦ θv ◦ σ

= σ−1 ◦ θw ◦ σ ◦ σ−1 ◦ θv ◦ σ

= θs ◦ θt
= θst.

Hence, wv ∈ Wst.

Now, we show that Ws
∗ ⊆ Ws∗ , so let s ∈ S and w∗ ∈ Ws

∗. That is, w ∈ Ws.
Then,

σ−1 ◦ θw∗ ◦ σ = σ−1 ◦ θ−1
w ◦ σ

= (σ−1 ◦ θw ◦ σ)−1

= θ−1
s

= θs∗ .

Hence, w∗ ∈ Ws∗ as required. To see the reverse inclusion holds, take
w ∈ Ws∗ . Then,

σ−1 ◦ θw∗ ◦ σ = (σ−1 ◦ θw ◦ σ)−1

= (θs∗)
−1

= θs.

Hence, w∗ ∈ Ws, and so w ∈ Ws
∗ as desired. Thus, Ws∗ = Ws

∗.

Remark 4.2.28. We remark that the above lemma implies if w ∈ Ws, then
Ws∗

∗ = Ws∗∗ = Ws, and so w∗ ∈ Ws∗ .

Theorem 4.2.29. Let S,W be inverse semigroups with W ⊆ S. If W is
wide in S , then the map ρ given by

Gu(S) → Gu(W), [s, φ] 7→ [w, σ(φ)] for any w ∈ Ws

is a well-defined homeomorphism of groupoids.
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Proof. Assume that W is wide. We begin by checking that ρ is well-defined.

We verify that if [s, φ1] = [t, φ2] then ρ([s, φ1]) = ρ([t, φ2]). Assuming the
former, we must have φ := φ1 = φ2, and the existence of an idempotent
e ∈ E(S) such that φ ∈ De, and se = te. We claim that ρ([s, φ1]) = ρ([t, φ2]).

Suppose ρ([s, φ1]) = [w, σ(φ1)] and ρ([t, φ2]) = [v, σ(φ2)], for some w ∈ Ws

and v ∈ Wt. Since W is wide, we know that Ws is non-empty for all s ∈ S.
By condition (W3), since φ(e) = 1 and se = te, we have the existence of
an idempotent f ∈ E(W) such that φ(ι(f)) = 1 and xf = yf whenever
x ∈ Ws and y ∈ Wt. In particular, wf = vf . Since φ(ι(f)) = 1, we
have σ(φ)(f) = 1 and so σ(φ) ∈ Df . Hence, [w, σ(φ1)] = [v, σ(φ2)]. Thus,
we have shown that ρ is well-defined. Note that if [s, φ] ∈ Gu(S) and
w, v ∈ Ws, then [w, σ(φ)] = [v, σ(φ)] (apply the above result in the case that
t = s and φ2 = φ1).

Next, we show that ρ is a groupoid homomorphism. Let ι : E(W) →
E(S) be the isomorphism given by (W1), and σ : Ê(S) → Ê(W) be the
induced homeomorphism. First, we check that ρ preserves composability.
Suppose ([s, φ], [t, γ]) ∈ Gu(S)(2). We wish to show that (ρ([s, φ]), ρ([t, γ])) ∈
Gu(W)(2), and so let w ∈ Ws and v ∈ Wt. Notice first that θt(γ) = φ. Then,
we have

θv(σ(γ)) = σ(θt(γ))

= σ(φ),

and so d([w, σ(φ)]) = r([v, σ(γ)]) as desired.

Now, we check that ρ is compatible with the groupoid multiplication. Let

([s, φ], [t, γ]) ∈ Gu(S)(2),

and take w ∈ Ws and v ∈ Wt. Then, using part (i) of Lemma 4.2.27, we
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have

ρ([s, φ])ρ([t, γ]) = [w, σ(φ)][v, σ(γ)]

= [wv, σ(γ)]

= ρ([st, γ])

= ρ([s, φ][t, γ]).

Next, we ensure ρ preserves inverses. Let [s, φ] ∈ Gu(S), and supose w ∈
Ws. Then,

ρ([s, φ])−1 = [w, σ(φ)]−1

= [w∗, θw(σ(φ))]

= [w∗, σ(θs(φ))]

= ρ([s∗, θs(φ)])

= ρ([s, φ]−1).

Hence, ρ([s, φ])−1 = ρ([s, φ]−1) as desired, and so we have shown that ρ is
a groupoid homomorphism.

Next, we show that ρ is bijective. Surjectiveness follows immediately from
(W2), as if [w, σ(φ)] ∈ Gu(W) then there exists s ∈ S such that φ ∈ Ds∗s and

σ(θs(φ)) = θw(σ(φ)).

Hence, w ∈ Ws and so ρ([s, φ]) = [w, σ(φ)]. In other words, the sets Ws

cover Gu(W).

To see injectivity holds, suppose that ρ([s, φ]) = ρ([t, γ]) for some s, t ∈ S
with φ ∈ Ds∗s and γ ∈ Dt∗t. Let w ∈ Ws and v ∈ Wt. Then we have
[w, σ(φ)] = [v, σ(γ)]. This is only true if σ(φ) = σ(γ) in which case φ = γ,
since σ is a homeomorphism. Now, the above equality implies that there
exists some idempotent f ∈ E(W) such that σ(φ) ∈ Df and wf = vf .
We remark that wf = vf holds regardless of what elements of Ws and
Wt we choose. In particular, we have φ(ι(f)) = 1 and, by property (W3),
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there exists e ∈ E(S) such that φ(e) = 1 and se = te, and so we have
[s, φ] = [t, γ].

It remains to show that ρ is a homeomorphism. This amounts to showing
that both ρ and ρ−1 are continuous. In the first case, let U ⊆ Gu(W) be
open. Let [s, φ] ∈ Gu(S) and w ∈ Ws. The inverse mapping ρ−1 is given
by ρ−1([w, σ(φ)]) = [s, φ], and is well-defined by virtue of ρ being bijective.
Suppose that U = Θ(w, V ) is a basic open set, where s ∈ W and V ⊆ Dw∗w

is open. Now,

ρ−1(U) = {[s, φ] ∈ Gu(S) : σ(φ) ∈ V } = {[s, φ] ∈ Gu(S) : φ ∈ σ−1(V )}.

Since σ is continuous, σ−1(V ) is open in Ê(S) and therefore open in Gu(S)
(Gu(S) is étale and so has open unit space), and we have ρ−1(U) = Θ(s, σ−1(V )),
which is open.

Conversely, let U ⊆ Gu(S) be open. As before, suppose U = Θ(s, V ) for
some s ∈ S and open V ⊆ Ds∗s. Let w ∈ Ws. Then,

ρ(U) = {[w, σ(φ)] ∈ Gu(S) : φ ∈ V } = {[w, σ(φ)] ∈ Gu(S) : σ(φ) ∈ σ(V )}.

Since σ is an open map, σ(V ) is open and so ρ(U) = Θ(w, σ(V )), which is
a basic open set of Gu(W). Hence, ρ and ρ−1 are continuous and so ρ is a
homeomorphism.

The converse seems to only hold if we begin with the assumption that
the idempotents are isomorphic. The issue arises when attempting to con-
struct an isomorphism between E(S) and E(W) via the collection of com-
pact open bisections on the character spaces - this method fails to work
when the collection D(E(S)) doesn’t form a basis for the topology on the
semicharacter space.

Proposition 4.2.30. Let S, W be inverse semigroups with W ⊆ S and
E(S) ∼= E(W). If Gu(S) ∼= Gu(W), then W is wide in S.
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Proof. Since we assume that E(S) ∼= E(W), it remains to show that (W2)
and (W3) hold.

Suppose ι : E(W) → E(S) is an isomorphism, and let σ : E(S) → E(W)

be the homeomorphism given by Equation 4.2. Without loss of generality,
we show that ΓS(Ê(S)) ⊆ σ−1ΓW(Ê(W))σ. So, let θs ∈ ΓS(Ê(S)), and
φ ∈ Ds∗s. Suppose w ∈ Ws. Then,

r(ρ([s, φ])) = r([w, σ(φ)]),

since ρ is a groupoid homomorphism. This implies that

σ(θs(φ)) = θw(σ(φ)),

which then gives us
θs(φ) = φ−1(θw(σ(φ))).

Hence, ΓS(Ê(S)) ⊆ σ−1ΓW(Ê(W))σ. A similar argument shows that ΓW(Ê(W)) ⊆
σ−1ΓS(Ê(S))σ i.e. ΓS(Ê(S)) ⊇ σ−1ΓW(Ê(W))σ. Hence, we have equality
as desired, and so (W2) is satisfied.

It remains to show that W satisfies (W3). Let s, t ∈ S and Fφ ∈ F(E(S)), as
well as w ∈ Ws and v ∈ Wt. Suppose there exists e ∈ F such that se = te,
but there is no idempotent f ∈ E(W) such that ι(f) ∈ Fφ and wf = vf .
That is, for every idempotent ι(h) ∈ Fφ, one has wh ̸= vh, and so one
cannot have [w, σ(φ)] = [v, σ(φ)]. Since ρ is a homeomorphism, this gives
us that

ρ−1([w, σ(φ)]) = [s, φ] ̸= [t, φ] = ρ−1([v, σ(φ)]).

But this contradicts our assumption that there exists e ∈ F satisfying se =
te. Hence, there must exist such an f ∈ E(W). An identical argument
shows that the converse implication holds.

4.3 The Groupoid of Ultragerms

Throughout this section, let S be a Boolean inverse semigroup, such that
E(S) is a generalized Boolean algebra. Recall that Spec(E(S)) denotes the
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set of Boolean homomorphisms from E(S) to the 2-element Boolean al-
gebra {0, 1}. This is commonly referred to as the Stone space of E(S) (see,
for instance, [Law23, p. 8-9]). As with the spectrum, we topologize the
Stone space of E(S) with the inherited product topology from the space
{0, 1}E(S), where {0, 1} is discrete.

4.3.1 The Topology on Spec(E(S))

We show below that the Boolean structure on Spec(E(S)) allows its topol-
ogy to have as a basis the collection D(E(S)), contrary to Ê(S) and Ê0(S),
which require the finer collection Patch(E(S)).

The following result is mentioned in [Ste23, p. 6], but we provide a proof.

Proposition 4.3.1. The collection D(E(S)) = {De : e ∈ E(S)} is a basis for
the inherited product topology on Spec(E(S)).

Proof. We use [Mun03, Lemma 13.2] by checking that the collection above
satisfies the condition whereby for every open U in Spec(E(S)) and every
φ ∈ U , then there exists e such that φ ∈ De ⊆ U . It is useful to note that
by swapping the order of quantifiers, this is equivalent to requiring that
for every φ ∈ Spec(E(S)) and open U containing φ, there exists e such that
φ ∈ De ⊆ U . Suppose that U is an open subset of Spec(E(S)) and Fφ ∈ U is
a non-trivial filter. Since Spec(E(S)) is topologized as a subspace of Ê(S),
which is generated by the patch topology, we may assume that

U = Ue;X ∩ Spec(E(S)) = De ∩
⋂
x∈X

Dc
x ∩ Spec(E(S))

for some e ∈ E(S) and X ⊆fin E(S). We define

f := e \ (e ∧
∨
x∈X

x),

and now claim that Df satisfies our condition. First, we check that φ ∈ Df .
Since φ is a Boolean homomorphism to the two-element Boolean algebra,
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we have

φ(f) = φ(e \ (e ∧
∨
x∈X

x))

= φ(e) \ (φ(e) ∧
∨
x∈X

φ(x))

= 1 \ (1 ∧ 0)

= 1 \ 0

= 1.

It remains to show that Df ⊆ Ue;X ∩ Spec(E(S)). So, let ψ ∈ Df . Since
f = e \ (e ∧

∧
X x) ≤ e, and ψ(f) = 1, it follows that ψ(e) = 1, since filters

are upward-closed. Now toward a contradiction, suppose that ψ(x′) = 1

for some x′ ∈ X . Then,

ψ(fex′) = ψ(f)ψ(e)ψ(x′) = 1.

However, f ⊥ (e ∧
∨

x∈X x) meaning f(e ∧
∨

x∈X x) = 0. The collection X

is pointwise compatible - notice that any two idempotents e, f are trivially
compatible since the set of idempotents is closed under taking inverses
and multiplication. This is true also of the set {e ∧ x : x ∈ X}. Thus, using
an identity from [Weh17, Proposition 3.1.9], this means that

0 = f(e ∧
∨
X

x) = f(
∨
X

e ∧ x) =
∨
X

(f ∧ e ∧ x),

which in particular implies f ∧ e ∧ x′ = 0. But ψ(fex′) = 1, meaning
ψ(0) = 1, which contradicts ψ being a Boolean homomorphism.

Similarly to how we defined an action of S on Ê(S), we can define an ac-
tion of S on Spec(E(S)) simply by restriction, since Spec(E(S)) ⊆ Ê(S)
and Spec(E(S)) is an invariant subset of Ê(S) (see [ACaH+22, Section
3.2]). We denote by G∞(S) the groupoid of germs of this action, and fol-
lowing [ACaH+22], call it the groupoid of ultragerms. Then G∞(S) is an
étale, ample groupoid with a basis given by the collection {Θ(s, U) : s ∈
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S, U ⊆◦ Ds∗s}. Notice that the groupoid G∞(S) embeds as a subgroupoid
into Gu(S).

Proposition 4.3.2. Let S and W be Boolean inverse semigroups with ultra-
germ groupoids G∞(S) and G∞(W). If ρ : G∞(S) → G∞(W) is a homeomor-
phism, then for every e ∈ E(S), we have ρ(De) = Df for some f ∈ E(W).

Proof. Fix e ∈ E(S). Since the collection {De : e ∈ E(S)} forms a basis
for Spec(E(S)), and ρ and its inverse are continuous, we can assume that
ρ(De) =

⋃
i∈I Di for some index set I ⊆ E(W). But ρ is a homeomorphism,

and in particular maps compact sets to compact sets. Since De is compact,
so is ρ(De), and so there exists a finite J ⊆ I such that ρ(De) =

⋃
i∈J Di.

Defining
j :=

∨
i∈J

i,

we have j ∈ E(W), since E(W) admits finite meets. In this case, ρ(De) =

Dj , and so ρ(De) is of the form Di for some idempotent i ∈ E(W).

4.3.2 Generalized Stone Duality

Recall that the generalized Boolean algebra of compact open sets on Spec(E(S))
is exactly the collection D(E(S)) = {De : e ∈ E(S)}. The meet and join
operations are given by set intersection and union, respectively.

Lemma 4.3.3. Let S be a Boolean inverse semigroup. The mapping

τS : E(S) → D(E(S))), e 7→ De (4.4)

is an isomorphism of generalized Boolean algebras.

Proof. We begin by showing that τ is bijective. It is certainly surjective,
as for any De ∈ D(E(S)) we have e 7→ De. To see that it is injective, let
e, f ∈ E(S) and suppose De = Df . Then e ∈ F if and only if f ∈ F for
every filter F on E(S). In particular, since e ∈ e↑, we have f ∈ e↑ implying
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f ∈ e↑, which means f ≥ e. Similarly, we have e ≥ f . Thus, e = f , and so
τ is injective.

It remains to show that τ is a homomorphism of generalized Boolean al-
gebra. If e, f ∈ E(S), then

τ(e ∧ f) = τ(ef) = Def = De ∩Df = De ∧Df .

Now, we note that if φ ∈ Spec(E(S)) such that φ(e∨ f) = 1, then since φ is
a Boolean homomorphism, we have that either φ(e) = 1 or φ(f) = 1, and
so De∨f = De ∪Df . In this case,

τ(e ∨ f) = De∨f = De ∪Df = De ∨Df .

Lastly, we check that τ preserves the 0 element. In E(S) this is the zero
idempotent 0. The elements of D0 are those characters φ such that φ(0) =
1, which implies D0 is empty, as no such characters exist. Hence D0 is the
0 element of D(E(S)).

Lemma 4.3.4. Let ρ : G∞(S) → G∞(W) be a homeomorphism, with homeomor-
phism between unit spaces ρ′ : Spec(E(S)) → SpecE(W). Then, the induced
map

ρ̂ : D(E(S))) → D(E(W), De 7→ ρ′(De) (4.5)

is an isomorphism of generalized Boolean algebras.

Proof. The isomorphism ρ̂ is well defined by Proposition 4.3.2. We first
check that ρ̂ is bijective. If f ′ ∈ E(W), then Df ′ ∈ D(E(S)), and ρ−1(Df ′) =

Df for some f ∈ E(S). Then, ρ̂(Df ) = Df ′ . Now, suppose ρ̂(De) = ρ̂(Df ) =

Du. Then ρ(De) = ρ(Df ) = Du, and so ρ−1(Du) = De = Df . Lastly, we
check that ρ̂ is a (generalized) Boolean homomorphism. The zero element
of D(E(S)) is the empty set, and clearly ρ(∅) = ∅. If De, Df ∈ D(E(S)),
we claim that ρ̂(De) ∧ ρ̂(Df ) = ρ̂(De ∧Df ). Suppose that ρ̂(De) = De′ and
ρ̂(Df ) = Df ′ . We first claim that

ρ̂(Def ) = D(ef)′ = De′f ′ = ρ̂(De)ρ̂(Df ).



4.3. THE GROUPOID OF ULTRAGERMS 87

We know that ρ(φ) ∈ D(ef)′ if and only if φ ∈ Def , which is true if and only
if φ ∈ De ∩Df . In this case,

φ ∈ ρ(De) ∩ ρ(Df ) = De′ ∩Df ′ = De′f ′ .

Hence, D(ef)′ = De′f ′ . We can now see that

ρ̂(De ∧Df ) = ρ̂(Def ) = D(ef)′ = De′f ′ = De′ ∩Df ′ = ρ̂(De) ∧ ρ̂(Df ).

It remains to check that ρ̂ respects the relative complement and join op-
erations. Suppose De ⊆ Df , such that Df \ De exists. We have that
ρ(φ) ∈ ρ(De \ Df ) if and only if φ ∈ De and φ /∈ Df , in which case
ρ(φ) ∈ ρ(De) \ ρ(Df ). Hence, ρ̂(Df \ De) = ρ̂(Df ) \ ρ̂(De). Finally, for
De, Df ∈ D(E(S)), we have ρ(φ) ∈ De′∪Df ′ if and only ifφ ∈ De orφ ∈ Df ,
if and only if φ ∈ De∪Df , which is equivalent to having ρ(φ) ∈ ρ(De∪Df ).
Hence, ρ̂(De ∨Df ) = ρ̂(De) ∨ ρ̂(Df ).

Lemma 4.3.5. Let ρ : G∞(S) → G∞(W) be a groupoid homeomorphism with re-
striction ρ′ : Spec(E(S)) → SpecE(W), induced isomorphism ρ̂ : D(E(S))) →
D(E(W)) given by Equation 4.5, and isomorphisms τS , τW as defined by Equa-
tion 4.4. Then, the map

ι : E(S) → E(W), e 7→ τ−1
W (ρ̂(τS(e)))

is an isomorphism of generalized Boolean algebras.

Proof. We have that ι is a composition of generalized Boolean algebra iso-
morphisms, and so is itself a generalized Boolean algebra isomorphism.

Recall that the sets Θ(s,Ds∗s) are compact open bisections (see Proposition
3.2.8). Below, we show that we don’t need every single bisection Θ(s,De).

Lemma 4.3.6. Let S be a Boolean inverse semigroup. Then Bisc(G∞(S)) =

{Θ(s,Ds∗s) : s ∈ S}.
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Proof. We wish to show that the collections {Θ(s,De) : s ∈ S, e ∈ E(S)}
and {Θ(s,Ds∗s) : s ∈ S} coincide. One can see that the latter is triv-
ially contained in the former, so we show the reverse inclusion holds. Let
Θ(s,De) be a compact open bisection - we claim that

Θ(s,De) = Θ(se,D(se)∗(se)).

If [s, φ] ∈ Θ(s,De) such that φ ∈ De, then we have φ ∈ De ∩ Ds∗s =

Des∗s = D(se)∗(se). Furthermore, notice that see = se, and so since φ ∈
De, we have [s, φ] = [se, φ] and so Θ(s,De) ⊆ Θ(se,D(se)∗(se)). Similarly,
if [se, φ] ∈ Θ(se,D(se)∗(se)), then [se, φ] = [s, φ] and φ ∈ Ds∗s, therefore
Θ(se,D(se)∗(se)) ⊆ Θ(s,Ds∗s). Hence, we have shown every compact open
bisection of G∞(S) is equal to one of the form Θ(s,Ds∗s) for some s ∈ S.

We now extend τS to a map ψS : S → Bisc(G∞(S)) given by

s 7→ Θ(s,Ds∗s) = {[s, φ] : φ ∈ Ds∗s}. (4.6)

By the above lemma, we know that the image of ψS indeed coincides with
Bisc(G∞(S)). We now show that it is an inverse semigroup isomorphism.
The following isomorphism is mentioned in [Ste23, 3.3], and a proof via
groupoids of filters is provided in [LL13] (in particular, see Proposition
2.9 and Lemma 3.11). We give an alternate proof.

Lemma 4.3.7. Let S be a Boolean inverse semigroup. Then the map given by

ψS : S → Bisc(G∞(S)), s 7→ Θ(s,Ds∗s)

is an isomorphism of inverse semigroups.

Proof. We first check that ψS is a homomorphism. Let s, t ∈ S. Using
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[Exe08, Proposition 4.5], we first note thatD(st)∗(st) = θt∗(Ds∗s∩Dt∗t). Then,

ψS(st) = Θ(st,D(st)∗(st))

= {[st, φ] : φ ∈ D(st)∗(st)}

= {[st, φ] : ϕ = θt(φ) ∈ Ds∗s ∩Dtt∗}

= {[s, ϕ][t, φ] : ϕ = θt(φ) ∈ Ds∗s ∩Dtt∗}

= {[s, ϕ][t, φ] : ϕ ∈ Ds∗s, φ ∈ Dt∗t

= Θ(s,Ds∗s)Θ(t,Dt∗t)

= ψS(s)ψS(t).

Hence, ψS preserves multiplication. To see that it preserves inverses, we
have

ψS(s
∗) = Θ(s∗, Dss∗)

= {[s∗, φ] : φ ∈ Dss∗}

= {[s∗, θs(ϕ)] : ϕ ∈ Ds∗s}

= Θ(s,Ds∗s)
∗

= ψS(s)
∗.

It remains to show that ψS is bijective. It is straightforward to check that it
is surjective, since the sets Θ(s,Ds∗s) give all compact open bisections by
Lemma 4.3.6.

Now, for injectivity, suppose ψS(s) = ψS(t). That is, Θ(s,Ds∗s) = Θ(t,Dt∗t).
Then [s, φ] ∈ Θ(s,Ds∗s) if and only if there exists [t, ϕ] ∈ Θ(t,Dt∗t) such that
[s, φ] = [t, ϕ]. In particular, this implies φ = ϕ, thus Ds∗s = Dt∗t. Note that
since the map e 7→ De is an isomorphism (Proposition 4.3.3), we must have
s∗s = t∗t. We claim that s = t.

For each φ ∈ Ds∗s, there exists eφ ∈ E(S) such that φ ∈ Deφ and seφ = teφ.
Consider the union

W :=
⋃

φ∈Ds∗s

Deφ .
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Certainly W is an open cover of Ds∗s, and since Ds∗s is compact, we can
pass to a finite collection I ⊆ Spec(E(S)) such that

W =
⋃
φ∈I

Deφ .

But since S is Boolean, it admits finite joins of idempotents, and so
∨

φ∈I eφ ∈
E(S). Since τ is a generalized Boolean algebra homomorphism (see Equa-
tion 4.4), we have ⋃

φ∈I

Deφ = D∨
φ∈I eφ

.

We now define
W ′ := Ds∗s ∩W = D(s∗s)(

∨
φ∈I eφ)

.

Notice that W ′ is a finite union and intersection of compact clopen sets, so
is itself compact and clopen. In this case, as Ds∗s ⊆ W ′, we have

W ′ = D(s∗s)(
∨

φ∈I eφ)
= Ds∗s,

and so (s∗s)(
∨

φ∈I eφ) = s∗s i.e. s∗s ≤
∨

φ∈I eφ. Note that this also holds
for t∗t. Now, applying Proposition 3.1.8, as well as the definition of germ
equivalence, we have

s = ss∗s = ss∗s(
∨
φ∈I

eφ) = s(
∨
φ∈I

eφ) =
∨
φ∈I

seφ

=
∨
φ∈I

teφ = t(
∨
φ∈I

eφ) = tt∗t(
∨
φ∈I

eφ) = tt∗t = t.

Hence, s = t as desired.

We have shown that if S is a Boolean inverse semigroup, then the map
ψS : S → Bisc(G∞(S)) is an isomorphism of inverse semigroups.

Lemma 4.3.8. Let S and W be Boolean inverse semigroups, such that there exists
a homeomorphism ρ : G∞(S) → G∞(W). Then the induced map given by

ρ̂ : Bisc(G∞(S)) → Bisc(G∞(W)), Θ(s,Ds∗s) 7→ ρ(Θ(s,Ds∗s))

is an isomorphism of inverse semigroups.
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Proof. We have seen that the collection of open bisections on an étale groupoid
form an inverse semigroup. Furthermore, the collection of compact open
bisections on an ample groupoid form an inverse semigroup, often called
the ample inverse semigroup [Ren21, Proposition A9]. Hence, it remains
to show that ρ̂ is an inverse semigroup isomorphism.

To see that ρ̂ is surjective, notice that we can write any compact open bi-
section of G∞(W) as Θ(s,Ds∗s) for some s ∈ W . Then, ρ−1(Θ(s,Ds∗s) is
a compact open bisection of G∞(S). Furthermore, injectivity of ρ̂ follows
from the injectivity of ρ and the well-definedness of ρ−1.

Let s, t ∈ S, so that Θ(s,Ds∗s) and Θ(t,Dt∗t) are compact open bisections.
We have

Θ(s,Ds∗s)Θ(t,Dt∗t) = {[s, φ][t, ϕ] : s, t ∈ S, φ ∈ Ds∗s, ϕ ∈ Dt∗t, φ = θt(ϕ)}

= {[st, ϕ] : st ∈ S, ϕ ∈ D(st)∗(st)}

= Θ(st,D(st)∗(st)).

Hence, ρ̂ respects multiplication of compact open bisections. Now, if s ∈ S,
we have

Θ(s,Ds∗s)
−1 = {[s, φ]−1 : s ∈ S, φ ∈ Ds∗s}

= {[s∗, θs(φ)] : s ∈ S, φ ∈ Ds∗s}

= {[s∗, ϕ] : s ∈ S, ϕ ∈ Dss∗}

= Θ(s∗, Dss∗).

Thus, ρ̂ respects inversion of compact open bisections. Therefore, ρ̂ is an
inverse semigroup homomorphism, and we have shown it is an isomor-
phism.

One might want to show a similar result to 4.2.22 for Boolean characters,
but it turns out that such a functor doesn’t necessarily map Boolean char-
acters to other Boolean characters. That is, if ι : E → E ′ is a morphism of
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generalized Boolean algebras, then the image of F (ι) as defined by

F (ι)(φ) = φ ◦ ι

doesn’t coincide with Spec(E ′). In this case, we must take a more direct
approach.

Lemma 4.3.9. Let E,E ′ be generalized Boolean algebras, and let ι : E → E ′ be
an isomorphism. Define

σU : Spec(E ′) → Spec(E), φ 7→ φ ◦ ι. (4.7)

Then σU is a homeomorphism.

Proof. We first check that σU indeed maps ultrafilters to ultrafilters. We
use the criteria introduced by Exel in [Exe08, Lemma 12.3], which states
that U is an ultrafilter on E if and only if U contains every element y such
that y⋒x for all x ∈ U . So, let U be an ultrafilter on E ′ and consider σU(U).
By the proof of 4.2.22, we know that σU(U) is at least a filter, so it remains
to check it is an ultrafilter. Let y ∈ E, and suppose y ⋒ x for all x ∈ σU(U).
That is, y ∧ x ̸= 0 for all x ∈ σU(U). Then, using the fact that ι is injective
and preserves meets and the 0, we have

ι(y) ∧ ι(x) = ι(y ∧ x) ̸= ι(0) = 0.

That is, ι(y) ⋒ ι(x). This is true for all x ∈ σU(U), and so holds for all
ι(x) ∈ U . Thus, since U is an ultrafilter, we have ι(y) ∈ U , and hence
y ∈ σU(U) as desired.

Next, we check that σU is bijective. Let φ, ψ ∈ Spec(E ′), and suppose
σ(φ) = σ(ψ). That is, φ(ι(e)) = ψ(ι(e)) for all e ∈ E. But ι is surjective, and
so φ(f) = ψ(f) for all f ∈ E ′. Hence, φ = ψ and σU is injective. To see it is
surjective, let φ ∈ Spec(E). Define a character ϕ on E ′ by

ϕ(e) = φ(ι−1(e)).
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Since ι is an isomorphism, so is ι−1, and so ϕ is a Boolean character. Fur-
thermore, we have

σU(ϕ)(e) = ϕ(ι(e)) = φ(ι(ι−1(e))) = φ(e).

Hence, σU is surjective and thus bijective.

We can define σ−1
U by

σ−1
U (φ)(e) = φ(ι−1(e)),

which is well-defined in virtue of ι being an isomorphism. A similar ar-
gument to that in the proof of Lemma 4.2.22 shows that σU and σ−1

U are
continuous. Hence, σU is a homeomorphism.

Theorem 4.3.10. Let S and W be Boolean inverse semigroups. Then S ∼=
W if and only if G∞(S) ∼= G∞(W).

Proof. Suppose that S and W are both Boolean inverse semigroups, such
that there exists a homeomorphism ρ : G∞(S) → G∞(W) with induced
map ρ̂ : Bisc(G∞(S)) → Bisc(G∞(W)). By Lemma 4.3.8, ρ̂ is an isomor-
phism of inverse semigroups. Consider the following composition of maps,
where ψS and ψW are defined as in Equation 4.6.

ψ−1
W ◦ ρ̂ ◦ ψS : S → W .

Then ψ−1
W ◦ ρ̂ ◦ ψS is a composition of inverse semigroup isomorphisms,

and thus is itself an inverse semigroup isomorphism between S and W .

We show that the converse implication holds. If ι : S → W is an isomor-
phism, and σ : Spec(E(W)) → Spec(E(S)) is the induced map, then by
Lemma 4.3.9 we know that σ is a homeomorphism between unit spaces.
Define a map ρU as follows.

ρU : G∞(S) → G∞(W), [s, φ] 7→ [ι(s), σ−1(φ)].

An identical argument to that of 4.2.25 shows that ρU is a homeomorphism
of groupoids.
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Chapter 5

Applications and Future
Investigation

In the following sections, we investigate how universal groupoids and
groupoids of ultragerms can be characterized in a variety of contexts. For
instance, we discuss the relationship between the corresponding groupoids
of a group with a zero adjoined, as well as a link between the finite sym-
metric inverse semigroup and the finite symmetric group (in particular,
their representations as one-object categories). We then discuss some fur-
ther questions and possible future routes of investigation.

5.1 Applications

First, we briefly discussC∗-algebras of inverse semigroups and groupoids,
and how our notion of wideness relates to Paterson’s results linking the
C∗-algebras of an inverse semigroup with that of its universal groupoid.

95
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5.1.1 The C∗-Algebra of the Universal Groupoid

We apply our results to those obtained by Paterson in [Pat99, Theorem
4.4.1, 4.4.2], which show that both the full and reduced C∗-algebras of an
inverse semigroup are isomorphic to that of its universal groupoid. We
direct the reader to his book for a detailed construction of these algebras,
and proof of this result.

Let H be a Hilbert space, and consider B(H), the collection of bounded
operators on H . We say that a ∈ B(H) is a projection if a2 = a = a∗, and we
say a is a partial isometry if a∗a is a projection ( [Put19, Definition 1.1.3]).

It is well-documented that every inverse semigroup can be represented
as the collection of partial isometries on a Hilbert space (see, for instance,
[Pat99, Proposition 2.1.4]). If S is an inverse semigroup, one can define a
representation of S on H to be a ∗-homomorphism π : S → B(H). It follows
that if e ∈ E(S) then π(e) is a projection, and so π(s) is a partial isometry
for each s ∈ S. One can use such representations to construct both the full
and reduced C∗-algebras of S (see [Pat99, Section 2.1]).

Similarly, if G is an arbitrary étale groupoid, then one can construct its full
and reduced C∗-algebras C∗(G), by taking the completions of Cc(G) with
respect to particular norms. This process is well-described in, for instance,
[Sim18, Chapter 3] and [Exe08, Section 3].

Corollary 5.1.1. Let S,W be Boolean inverse semigroups such that W ⊆ S.
If W is wide in S, then C∗(S) ∼= C∗(W).

Proof. Since W is wide in S, we have Gu(S) ∼= Gu(S). By [Pat99, Theo-
rem 4.4.1], we have C∗(S) ∼= C∗(Gu(S)) and C∗(W) ∼= C∗(Gu(W)). Hence,
C∗(S) ∼= C∗(W).

Remark 5.1.2. In [Ste10], for some inverse semigroup S and commuta-
tive ring with unit K, Steinberg introduces the semigroup algebra KS,
and describes this as a convolution algebra of functions on the universal
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groupoid Gu(S) of S. We suggest further enquiry into the relationship be-
tween the Steinberg algebra of the universal groupoid of an inverse semi-
group S, and the semigroup algebra KS.

5.1.2 Groups with an Adjoined Idempotent

Consider the inverse semigroup S obtained by taking a group with iden-
tity element 1. Since the idempotents consist of a single element, one might
consider S to be a Boolean inverse semigroup where the idempotents are
the trivial Boolean algebra. However, this case is uninteresting, and so we
instead consider a slight extension by adjoining an additional idempotent.

If G is a group, we can adjoin a 0 element to the group to obtain an inverse
semigroup S = G ∪ {0}, such that 0 satisfies 0g = g0 = 0 for all g ∈ G,
and 0−1 = 0. Then, E(S) ∼= {0, 1}, where {0, 1} is the two-element Boolean
algebra. In this case, S admits a non-empty collection of filters, consisting
of the filters {{0}, {0, 1}}.

Proposition 5.1.3. Let G be a group, and S = G ∪ {0} be an inverse semi-
group with 0 adjoined. Then Gu(S) ∼= G ∪ {0}, and G0(S) ∼= G∞(S) ∼= G.

Proof. Since G is a group, the set of idempotents E(S) consists of a sin-
gle element, say e, which is the identity of the group, along with the
adjoined 0. We remark that this makes G into a Boolean inverse semi-
group with idempotents isomorphism to the two-element Boolean alge-
bra. This implies there exists only one non-zero character φ ∈ Ê(S) given
by φ(e) = 1 and φ(0) = 0, which is also a Boolean character. This means
that Ê(S) = Spec(E(S)) = {φ}, implying that both Gu(S) and G∞(S) are a
group.

It remains to show that this group is identical to G. Note that Gu(S) con-
sists of elements {(s, φ) : s ∈ S} modulo the germ equivalence relation.
However, in this context, no pairs are equivalent. If [s, φ] = [t, φ], then
we must have sf = tf for some idempotent f , but f must either be the
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identity e of G, or 0. However, φ /∈ D0 = ∅, and so we must have f = e,
implying s = t. That is, each germ in the groupoid is a singleton. Therefore
Gu(S) = {[s, φ] : s ∈ S}. Define a map π : Gu(S) → G given by [s, φ] 7→ s.
The previous statement shows that π is injective, and surjectivity follows
from the fact that s∗s = 0 and so φ ∈ Ds∗s for every s ∈ G.

Lastly, we show that π is a semigroup homomorphism. Let [s, φ], [t, φ] ∈
Gu(S). We know that the product of these elements is [st, φ], which is
mapped by π to st ∈ G. Hence, π(st) = π(s)π(t). Furthermore, [s, φ]−1 =

[s∗, φ] 7→ s∗ = s−1. Thus, π is a semigroup homomorphism.

Proposition 5.1.4. Let In be the symmetric inverse semigroup on n ele-
ments. Then G∞(In) is the unique contractible groupoid on n objects, up
to isomorphism.

Proof. We have that the ultrafilters on E(In) consist of the principal ultra-
filters generated by primitive elements, which correspond to singletons
of E(In). That is, Spec(E(In)) ∼= {1, 2, . . . , n}, and so G∞(In) has objects
{1↑, 2↑, . . . , n↑}. Furthermore, if x, y ∈ {1, 2, . . . , n}, then the partial bijec-
tion x 7→ y takes the ultrafilter x↑ to the ultrafilter y↑, and so the action
of In on Spec(E(In)) is transitive. Hence, Hom(x↑, y↑) = {∗} for every
x, y ∈ {1, 2, . . . , n}.

We see that G∞(In) is contractible, since every hom-set consists of a single
isomorphism. Furthermore, if G ′ is any contractible groupoid with objects
{1̄, 2̄, . . . , n̄}, we can define a map G ′ → G∞(In) that maps 1̄ to 1↑, and an
arrow x̄→ ȳ to the unique arrow x↑ → y↑.

Remark 5.1.5. We note that the unique contractible groupoid with n objects
is isomorphic to the full equivalence relation on a set X with n elements -
that is, G∞(In) ∼= X ×X , where |X| = n.

Proposition 5.1.6. Every subgroup of Z, viewed as an inverse semigroup,
is wide in Z.
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Proof. Let H ⊆ Z be a subgroup of Z. Since Z is cyclic, every subgroup is
of the form nZ for some n ∈ N. That is, H = mZ for some m ∈ N. But
then Z ∼= H via the isomorphism x 7→ mx. Hence, Gu(Z) ∼= Gu(H). We
know that the idempotents are isomorphic (being a singleton), and so by
Proposition 4.2.30 H is wide in Z.

5.2 Future Investigation

5.2.1 Minimally Wide Sub-Semigroups

We have seen that an inverse semigroup S may give rise to sub-semigroups
with the same universal groupoid as S. One natural question one may ask
is whether a minimal wide sub-semigroup exists.

Given an inverse semigroup S , let Wide(S) denote the collection of wide
sub-semigroups of S. Then Wide(S) is a partially ordered set, where the
order is given by inclusion of sub-semigroups. This order is partial since,
as we have seen, an inverse semigroup may admit pairs of wide sub-
semigroups, such that neither contains the other. Furthermore, it is not
true in general that unions or intersections of wide sub-semigroups are
themselves wide. However, the relation “is a wide sub-semigroup of” is
transitive, due to the transitivity of groupoid homeomorphisms.

In general, there exists no “least” wide sub-semigroup, in the sense that
it is contained in every other wide sub-semigroup. However, a totally or-
dered chain C of wide sub-semigroups may admit a greatest lower bound
i.e. a sub-semigroup W such that W ⊆ T for all T ∈ C.

In particular, let {Wi} be a chain of wide sub-semigroups of S, such that
Wi ⊇ Wi+1 for all i. Then inf({Wi}) =

⋂
iWi, but in general, inf({Wi}) is

not wide. One expects that it is (W1) that fails, as the process of passing to
the intersection of wide sub-semigroups loses idempotents.

Example 5.2.1. We consider again the inverse semigroup Z ∪ {e}. The
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collection of wide inverse subsemigroups of Z ∪ {e} is a partially ordered
set

{Z ∪ {e}, 2Z ∪ {e}, 3Z ∪ {e}, . . .}.

Note that here,

E(Z ∪ {e}) = E(2Z ∪ {e}) = . . . ∼= {0, 1}.

This is order-isomorphic to the partially ordered set of natural numbers
ordered by the “divides” relation (whereby a ≤ b if and only if a divides
b).

This collection of inverse semigroups has no minimum element, but has
infimum the two-element inverse semigroup consisting of the idempo-
tents {0, 1}. In particular,

E(inf{nZ ∪ {e}}) ∼= E(Z ∪ {e}) ∼= {0, 1}.

Remark 5.2.2. We propose further investigation into the existence and char-
acterization of minimal wide sub-semigroups, and conjecture that such
a characterization may be obtained by a suitable application of Zorn’s
lemma to this problem. However, detailed discussion of this falls outside
the scope of this thesis.

5.2.2 Path Groupoids

In his 2002 paper, Paterson describes how one can generate an inverse
semigroup from an arbitrary directed graph Σ, with vertex set V and edge
set E. He then applies the universal groupoid construction, obtaining an
ample groupoid that coincides with what is called the path groupoid. El-
ements of this groupoid are triples of the form (αγ, l(α) − l(β), βγ) where
α, β are finite paths in Σ, γ is a finite or infinite path, and l(α) denotes the
length of the path α. The unit space of this groupoid consists of the triples
of the form (αγ, 0, αγ), and so can be identified with the collection of finite
and infinite paths.
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There is an invariant subset of the unit space consisting of only the paths
that are either infinite, or finite but terminate at an infinite emitter - that is,
a vertex v with d−1(v) = ∞. The reduction of the groupoid to this subset is
another commonly studied groupoid, called the boundary path groupoid
of Σ [Rig, Section 2]. Paterson proves that the C∗-algebras of Σ and the
boundary path groupoid of Σ are isomorphic.

Take a directed graph Σ, and let z be a distinguished zero element. The
graph inverse semigroup of G is the inverse semigroup SG generated by V ∪
E ∪ E∗ ∪ {z} following the relations below.

(i) For all s ∈ S, we have 0s = s0 = 0.

(ii) For all e ∈ E, we have d(e)e = e and er(e) = e. Furthermore, e∗d(e) =
e∗ and r(e)e∗ = e∗.

(iii) If a, b ∈ V ∪ E ∪ E∗ and r(a) ̸= d(b), then ab = z.

(iv) If e, f ∈ E and e ̸= f then e∗f = z.

Notice that for an arbitrary element of SG, many of the products reduce
to vertices or go to z. Hence, without loss of generality, we can write an
element of SG as

α1α2 . . . αnβk
∗βk−1

∗ . . . β1
∗

where each αi, βi ∈ V ∪ E.

Paterson models the inverse semigroup S by the collection T of pairs (α, β)
where α, β are finite paths with matching ranges. One can identify αβ∗ ∈ S
with (α, β) ∈ T . We can then construct the universal groupoid of S ∼=
T . We have that E(T ) = {(α, α) : α ∈ Y }, and so we can identify the
idempotents of T with the finite paths in G. The natural partial order on T
is such that α ≥ β if and only if α is an initial segment of β - that is, if there
exists γ ∈ Y such that β = αγ. In this way, filters on E(T ) correspond to
(possibly infinite) paths.
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Question 5.2.3. Let Σ be a directed graph, with graph inverse semigroup
S. Does S admit any wide sub-semigroups?

That is, are there any sub-semigroups W ⊆ S such that Gu(W) ∼= Gu(S)?
Furthermore, could such a sub-semigroup be characterized in terms of the
underlying directed graph?

One candidate is the sub-semigroup Sn of S given by the collection {(αγ, βγ) :
l(α) = l(β) = n} ∪ {z}. Paterson asserts that E(Sn) = E(S), which cer-
tainly implies that Sn satisfies the first condition of wideness. The univer-
sal groupoid of Sn can be identified with the collection {(αγ, 0, βγ) : l(α) =
l(β) = n}, which is a subgroupoid of Gu(S). However, as before, in-depth
discussion of this falls outside our current scope.
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